首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed study of the pH dependence of the Michaelis-Menten constants (V and Km) of aryl sulfatase A (EC 3.1.6.1) from rabbit liver indicates that at least two functional groups (pK's ~4.3 and ~7 in the enzyme-substrate complex) participate in the enzymic degradation of substrate. Aryl sulfatase A is inactivated by diethyl pyrocarbonate (ethoxyformic anhydride). The enzyme that has been modified with this reagent can in turn be reactivated by treatment with hydroxylamine. The pH dependence of inactivation reveals a reactive group having a pK of 6.5–7.0. The results indicate that at least one histidine plays an important catalytic role in rabbit liver aryl sulfatase A, consistent with the results of earlier workers who employed diazotized sulfanilic acid. Phosphate ion, a competitive inhibitor, partially protects the enzyme from inactivation by diethyl pyrocarbonate whereas sulfate ion, also a competitive inhibitor, increases the rate of inactivation by diethyl pyrocarbonate. This result is of particular significance in view of the anomalous kinetics of aryl sulfatase A. The kinetic effects of even small amounts of sulfate ion impurities in many commercial sulfate ester substrate preparations is also discussed.  相似文献   

2.
The structural basis of anomalous kinetics of rabbit liver aryl sulfatase A   总被引:1,自引:0,他引:1  
Rabbit liver aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) is inactivated during the hydrolysis of nitrocatechol sulfate and the rate of formation of turnover-modified aryl sulfatase A depends on the initial velocity of the enzymatic reaction. Organic solvents such as ethanol and dioxane favor the anomalous kinetic behavior. The turnover-modified enzyme can apparently be reactivated by arsenate, phosphate, pyrophosphate, and sulfate in the presence of nitrocatechol sulfate. The apparent dissociation constants of these ions in the reactivation of the enzyme are similar to their Ki values. Sulfite, which is a competitive inhibitor, does not reactivate the turnover-modified enzyme. Thus, all known activators are competitive inhibitors but not all competitive inhibitors are effective as activators. Inactivation of aryl sulfatase A during hydrolysis of 35S-labeled substrate at pH values near the pH optimum (pH 5–6) is accompanied by the incorporation of radioactivity into the protein molecule and the turnover-modified enzyme is thereby covalently labeled. The stoichiometry of the incorporation of radioactivity corresponds to 2 g atom of sulfur per mole of enzyme monomer, or 1 g atom of sulfur per equivalent peptide chain. It is also shown that isolated turnover-modified rabbit liver aryl sulfatase A has lost approximately 76% of its secondary structure as compared to the native enzyme. The specific activity of the inactive enzyme is also decreased by 82%. Turnover-modified rabbit liver aryl sulfatase A is partially reactivated by sulfate ions in the presence of nitrocatechol sulfate. However, circular dichroism measurements and fluorescence spectra of the isolated “reactivated” turnover-modified enzyme indicate only a further loss of secondary structure. The specific activity of this “reactivated” enzyme is in fact decreased. The loss in secondary structure and the enzyme activity of the “reactivated” aryl sulfatase A is prevented in the presence of sulfate ions. Turnover-modified rabbit liver aryl sulfatase A behaves as a very fragile molecule.  相似文献   

3.
Mammalian aryl sulfatase A enzymes are known to exhibit an anomalous kinetic behavior in which the enzyme becomes inactivated as it catalyzes the hydrolysis of substrate. Part of the activity of this inactive, turnover-modified form of the enzyme can apparently be restored by the simultaneous presence of substrate and sulfate ion. The present experiments, conducted with 2-hydroxy-5-nitrophenyl [35S]sulfate (nitrocatechol sulfate), establish that the turnover-modified enzyme is covalently labeled. The stoichiometry of the incorporation of radioactivity corresponds to 2 g atom of 35S per mole of enzyme monomer (each monomer of rabbit liver aryl sulfatase consists of two equivalent subunits). It is also shown that isolated, turnover-modified enzyme has lost 80% of its secondary structure when compared to the native enzyme. A commonly used sulfating agent, pyridine-sulfur trioxide complex brings about a similar loss of activity and of secondary structure.  相似文献   

4.
The polymerization of aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) has been studied by frontal gel chromatography on Sephadex G-200 and Bio-Gel A-5m under various conditions of pH, ionic strength, and temperature. The aryl sulfatase A molecule exists as a monomer and as a dimer at pH 7.5 and pH 4.5, respectively. The extent of dissociation is markedly pH-, protein concentration-, and ionic strength-dependent. Only a small effect of temperature was observed. The enthalpy change (ΔHo) for the dissociation was ?2.5 ± 1 kcal/mol at pH 5.5–5.6, and the entropy change for dissociation of the enzyme dimer to two monomeric units was ?47 cal mol?1 deg?1. Sulfate ion has little effect on the extent of dissociation of the enzyme at pH 5.6. The present studies suggest that the dissociation of rabbit liver aryl sulfatase A is regulated by the ionization of amino acid residues whose apparent pK is between pH 5 and 6. The driving force for the association of the subunits of the enzyme is primarily ionic and/or ionic/hydrogen bond formation. The small enthalpy change and the fact that dissociation is strongly favored by an increase in the ionic strength suggest that hydrophobic interactions play only a minor role in stabilizing the dimeric quaternary structure relative to the monomeric state. The monomeric form of the enzyme exhibits the anomalous kinetics often observed with sulfatase A but the dimer does not show anomalous kinetics. Since aryl sulfatase A is probably in the dimeric form in the lysosome, the anomalous kinetics of the enzyme are unlikely to be of physiological importance in the intact lysosome.  相似文献   

5.
Characterization of arylsulfatase C isozymes from human liver and placenta   总被引:1,自引:0,他引:1  
Arylsulfatase C and steroid sulfatase were thought to be identical enzymes. However, recent evidence showed that human arylsulfatase C consists of two isozymes, s and f. In this study, the biochemical properties of the s form partially purified from human placenta were compared with those of the f form from human liver. Only the placental s form has steroid sulfatase activity and hydrolyses estrone sulfate, dehydroepiandrosterone sulfate and cholesterol sulfate. The liver f form has barely detectable activity towards these sterol sulfates. With the artificial substrate, 4-methylumbelliferyl sulfate, both forms demonstrated a similar KM but the liver enzyme has a pH optimum of 6.9 while the placental form displayed two optima at 7.3 and 5.5. The molecular weight of the native enzyme determined with gel filtration was 183,000 for the s form and 200,000 for the f form and their pI's were also similar at 6.5. However, the T50, temperature at which half of the enzyme activity was lost, was 49.5 degrees C for the f form and 56.8 degrees C for the s form. Polyclonal antibodies raised against the placental form reacted specifically against the s and not the f form. They immuno-precipitated concomitantly greater than 80% of the total placental arylsulfatase C and steroid sulfatase activities while less than 20% of the liver enzyme was immuno-precipitable. In conclusion, the two isozymes s and f of arylsulfatase C in humans purified from placenta and liver, respectively, have similar KM, pI' and native molecular weight. However, they are distinct proteins with different substrate specificity, pH optima, heat-lability and antigenic properties. Only the s form is confirmed to be steroid sulfatase.  相似文献   

6.
An aryl sulfatase of unusual specificity has been isolated from the liver of marine mollusk Littorina kurila. It hydrolyzes p-nitrophenyl sulfate, does not affect the natural fucoidan, and catalyzes splitting off the sulfate group in position C4 of xylose residues within the carbohydrate chains of holostane triterpene glycosides from sea cucumbers. The properties of the enzyme were studied at pH 5.4. The protein is homogeneous according to electrophoresis and has M 45 ± 1 kDa. The semiinactivation time of the enzyme at 60°C is 20 min, and its K m value for the hydrolysis of p-nitrophenyl sulfate is 8.7 ± 1 mM. It was shown that natural sulfated polyhydroxysteroids inhibit activity of the sulfatase; their I 50 values depend on their structures and are within the range from 10?3 to 10?5 M.  相似文献   

7.
Abstract– The enzymatic hydrolysis by brain homogenate of the sulfate esters of estrone, pregnenolone, dehydroepiandrosterone, testosterone, cholesterol and p-nitrophenol was studied. With homogenate of young rat brain, the pH optima of estrone sulfatase 4 4 The term steroid sulfatase is used as a general name for the enzyme(s) which hydrolyzes the sulfate ester of a steroid. Simplified terms, such as estrone sulfatase, instead of the more formal terms, such as estrone sulfate sulfohydrolase, have been used throughout.
and arysulfatase C (p-nitrophenyl sulfate as substrate) were 8.2 and all other steroid sulfatases had pH optima at 6.6. Apparent Kms for these steroid sulfates were widely different. The highest Km value was 32.2 μm for estrone sulfate and the lowest was 0.66 μm for testosterone sulfate; the Km for p-nitrophenyl sulfate was 30 fold higher than for estrone sulfate. Specific activity was also highest with estrone sulfatase and lowest with testosterone sulfatase; specific activity with aryl sulfatase C was over 3 fold higher than with estrone sulfatase. Estrone sulfatase activity was inhibited noncompetitively by sulfate esters of dehydroepiandrosterone, pregnenolone, and cholesterol; on the other hand, other steroid sulfatases were inhibited by these latter three sulfates competitively. Developmental changes of these sulfohydrolase activities in rat brain were almost identical with the exception of testosterone sulfatase activity; the latter sulfatase had a peak activity at 30 days old, while all other sulfatase had a peak at 20 days old. Thermal stability of all these activities was identical. Testosterone sulfatase activity in neurological mouse mutants, jimpy, msd, and quaking mice, was less than one half of littermate controls, while other steroid sulfatase levels in these mutants' brain were normal. All sulfatase activities were diminished in the brain of a metachromatic leukodystrophy patient with multiple sulfatase deficiency. The brains of classical metachromatic leukodystrophy patients contained normal levels of all steroid sulfatases and arylsulfatase C, with the single exception of testosterone sulfatase which level was less than 50% of control.  相似文献   

8.
The monomeric form of rabbit liver aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) was covalently coupled to CNBr-activated Sepharose and the catalytic properties of the covalently coupled monomer subunit were examined. The immobilized subunit showed one pH optimum near pH 5.6 which appears to be the characteristic pH optimum of the monomer. The enzyme-Sepharose complex exhibited the characteristic anomalous kinetic behavior at pH 5.5 but there was no turnover-induced inactivation of the immobilized enzyme at pH 4.5. The covalently coupled subunit column was examined for its ability to act as a subunit affinity chromatography medium. It was found that dissolved aryl sulfatase A was removed from solution at pH 4.5 and pH 5.0, I = 0.2, and became associated with the affinity column of Sepharose-aryl sulfatase A. The retained subunit of the enzyme could subsequently be quantitatively eluted with 0.2 m Tris-HCl, pH 7.5. Extraneous protein such as bovine serum albumin did not measureably affect the rate or equilibrium for association of the enzyme to the covalently bound subunit. The extent of binding of the enzyme to the affinity column was found to be strongly dependent on the time of equilibration and on the pH. About 90% of the enzyme was retained after 24 h at pH 5.0, I = 0.2. Under otherwise comparable conditions, use of Sepharose-6MB resulted in slightly faster association than did Sepharose-4B. Under the experimental conditions employed, the total capacity of the affinity column was approx 50% of the total aryl sulfatase A coupled to the Sepharose. The rabbit liver subunit column also permits the purification of several other aryl sulfatase A enzymes. Thus, the subunit affinity column provides a simple, convenient, and rapid procedure for the isolation of most mammalian aryl sulfatase A enzymes as well as for studying inter- and intraspecific subunit association interactions.  相似文献   

9.
Steroid sulfatase of human placenta has been solubilized by treatment of the microsomal fraction with an amphoteric surface active agent, Miranol H2M and ultrasound. Criteria of solubility include non-sedimentation of the activity following centrifugation at 160,000 × g, its retention on Sepharose 6B and a single peak of activity after polyacrylamide gel electrophoresis. Enzyme activity was located in the same gel fractions for the two substrates tested; cholesterol sulfate and dehydroisoandrosterone sulfate. The addition of dithiothreitol was found necessary to maintain the stability of the enzyme indicating the presence of sulfhydryl groups in the molecule. A molecular weight of approximately 330,000 has been estimated from the elution volume of the enzyme system on a column of Sepharose 6B. It is believed that this protein represents a sulfatase enzyme complex composed of subunits with different specificities. From kinetic studies, a Km of 6.2 × 10?5M for the cleavage of dehydroisoandrosterone sulfate and a Km of 2 × 10?6M for the cleavage of cholesterol sulfate have been calculated.  相似文献   

10.
Aryl sulfamates were originally developed as inhibitors of steroid sulfatase, and have recently been shown to be powerful inactivators of a bacterial sulfatase, PaAtsA from Pseudomonas aeruginosa. We demonstrate that a simple aryl sulfamate, 3-nitrophenyl sulfamate, can inactivate sulfatases from various sources including snail, limpet and abalone. In each case inactivation was time-dependent and active-site directed, as demonstrated by protection against inactivation by substrate. These results suggest that such easily acquired aryl sulfamates can be used as reliable biochemical reagents for the study of sulfatases from a diverse array of sources.  相似文献   

11.
An aryl β-hexosidase was purified 800-fold from bovine liver. The purified enzyme hydrolyzed p-nitrophenyl glycosylpyranoside derivatives of β-d-galactose, β-d-glucose, β-d-xylose, β-d-mannose, and α-l-arabinose, but did not hydrolyze several other p-nitrophenyl glycosides. The enzyme also catalyzed hydrolysis of a variety of plant arylglucosides. Disaccharides, polysaccharides, glycolipids, glycoproteins, and glycosaminoglycans containing terminal nonreducing β-d-galactopyranosyl or β-d-glucopyranosyl residues were not hydrolyzed. The pH optima for the several substrates tested ranged from 7.0 to 9.5. The purified enzyme was homogeneous by disc gel electrophoresis and had a molecular weight of 41,000 by Sephadex gel filtration and 46,000 by disc gel electrophoresis performed in the presence of sodium dodecyl sulfate. The enzyme readily transferred glycosyl residues from susceptible β-galactosides or β-glucosides to other sugars; the resulting products were not hydrolyzed by the enzyme. Methyl α-d-glucopyranoside was the most efficient carbohydrate acceptor compound tested. The enzyme exhibited a Km for p-nitrophenyl β-d-galactopyranoside of 1.78 × 10?3m and for p-nitrophenyl β-d-glucopyranoside, 2.50 × 10?3m when incubations were conducted in the presence of 0.15 m methyl α-d-glucopyranoside. Aryl β-hexosidase was found in the cytosol of all mammalian livers tested, but could not be detected in liver of birds, reptiles, or fish; low levels were detected in frog liver. Analysis of bovine extracts indicated that the enzyme occurred in liver, kidney, and intestinal mucosa; it was not detected in testis, spleen, serum, or muscle.  相似文献   

12.
Tryptophan hydroxylation in cockroach (Periplaneta americana) nervous tissue was measured and compared to the hydroxylation of tryptophan in rat brain. Tryptophan hydroxylation in both tissues requires a pterine cofactor, and is inhibited by p-chlorophenylalanine. The molecular weight of the protein responsible for hydroxylation of tryptophan in cockroach nervous tissue obtained from gel filtration was estimated to be 54,000.The pH optima and enzyme kinetics differed greatly between the two hydroxylases. Hydroxylation of tryptophan by the enzyme obtained from cockroach tissues incubated with dimethyltetrahydropterine had a pH optimum of about 5.8–5.9 and a Km in crude enzyme preparations of 2.6 × 10−6 M and is activity was substrate inhibited above 10−4 M tryptophan. Hydroxylation of tryptophan by the enzyme obtained from rat brain incubated with dimethyltetrahydropterine had a pH optimum of about 6.5–7.0, a Km of about 6.7 × 10−4 M and exhibited no substrate inhibition at tryptophan concentrations up to 2 × 10−3 M.When incubated with biopterin, the presumed natural cofactor, the hydroxylase from cockroach tissues had a Km of about 6.8 × 10−5 M and no substrate inhibition occurred at tryptophan concentrations up to 2 × 10−3 M. Under the same conditions rat hydroxylase had a Km of 1.1 × 10−5M and substrate inhibition occurred above 10−4 M tryptophan.Unlike the mammalian situation, administration of tryptophan peripherally did not change the 5-hydroxytryptamine concentration in cockroach nervous tissue, but did increase tryptophan levels. The low Vmax values of the cockroach hydroxylase and the inability of administered tryptophan to elevate 5-hydroxytryptamine levels suggest that in the cockroach hydroxylation of tryptophan itself may be the limiting factor in the biosynthesis of 5-hydroxytryptamine.  相似文献   

13.
A laccase from the culture filtrate of white rot fungus Daedalea flavida MTCC-145 has been purified and characterized. The method involved concentration of the culture filtrate by ultrafiltration and an anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (native PAGE) both gave single protein bands indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 75.0 kDa. Purification fold was 21.5 while recovery of the enzyme activity was 11.52%. Using 2,6-dimethoxyphenol, diammonium salt of 2,2'-[azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)] and 3,5-dimethoxy-4-hydroxybenzaldehyde azine as substrates, the Km, kcat, and k cat/K m values of the laccase were found to be 440 µM, 6.45 s–1, 1.47 × 104 M–1 s–1; 366 µM, 6.45 s–1, 1.76 × 104 M–1 s–1; and 226 µM, 6.45 s–1, 2.85 × 104 M–1 s–1, respectively. The pH and temperature optima were 4.5 and 50°C, respectively. The enzyme was most stable at pH 5.0 when exposed for 1 h. The purified laccase has yellow color and shows no absorption band around 610 nm characteristic of blue laccases. The enzyme transforms toluene and substituted toluenes to corresponding benzaldehyde and substituted benzaldehydes in the absence of mediator molecules with higher catalytic efficiency as compared to other known laccases.  相似文献   

14.
Human liver arylsulfatase A was treated with arginine-specific reagents (diones), resulting in a loss of enzyme activitity with apparent first-order kinetics. Sulfite and borate—competitive inhibitors of the enzyme—provided complete protection from inactivation by phenylglyoxal. Sulfite and substrate each likewise protected against enzyme inactivation by 2,3-butanedione. A plot of pseudo-first-order rate constants of enzyme inactivation versus 2,3-butanedione concentrations suggests that an essential arginine residue is modified with a loss in function of the binding site or of the active site of the protein. Chemical analysis of the butanedione-treated sulfatase indicates that complete enzyme inactivation corresponds to a modification of only about 2 of the 20 arginine residues per enzyme subunit. Taken together, all of the results strongly suggest that arginine residues are essential for the activity of arylsulfatase A. An incidental discovery in this work is that borate ion is a competitive inhibitor of human arylsulfatase A with a Ki of 2.5 × 10?4 M.  相似文献   

15.
In a recent communication, A. Waheed and R. L. Van Etten (1979, Arch. Biochem. Biophys. 195, 248) showed that the sulfatase A of rabbit liver (arylsulfate sulfohydrolase, EC 3.1.6.1), which becomes inactivated as it catalyzes the hydrolysis of substrate, covalently incorporates 35S from nitrocatechol [35S]sulfate during this reaction and at the same time loses most of its secondary structure in solution. Circular dichroism spectra presented here for the native and turnover-modified forms of the sulfatase A of ox liver indicate no difference in the region of the spectrum below 240 nm associated with polypeptide backbone contributions or in the region from 350-250 nm associated with the side-chain chromophore transitions. In addition no differences were evident for the two forms of the ox liver enzyme from ultraviolet absorbance and fluorescence spectroscopy measurements. From these data we conclude that, in contrast to the situation with the rabbit enzyme, there is no loss of secondary structure associated with inactivation of ox liver sulfatase A in the course of enzymic catalysis.  相似文献   

16.
Purine nucleoside phosphorylase (PNP) was purified from rat hepatoma cells and normal liver tissue utilizing the techniques of ammonium sulfate fractionation, heat treatment, ion-exchange and molecular exclusion chromatography, and polyacrylamide gel electrophoresis. Homogeneity was established by disc gel electrophoresis in the presence and absence of sodium dodecyl sulfate. Purified rat hepatoma and liver PNPs appeared to be identical with respect to subunit and native molecular weight, substrate specificity, heat stability, kinetics and antigenic identity. A native molecular weight of 84,000 was determined by gel filtration. A subunit molecular weight of 29,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point was observed at pH 5.8, and the pH optimum was 7.5. Inosine, guanosine, xanthosine, and 6-mercaptopurine riboside were substrates for the enzymes. The apparent Km for both inosine and guanosine was about 1.0 × 10?4m and for phosphate was 4.2 × 10?4m. Hepatoma and liver PNP showed complete cross-reactivity using antiserum prepared against the liver enzyme.  相似文献   

17.
Rabbit liver aryl sulfatase A (aryl-sulfate sulfohydrolase, EC 3.1.6.1) is a glycoprotein containing 4.6% carbohydrate in the form of 25 residues of mannose, seven residues of N-acetylglucosamine, and three residues of sialic acid per enzyme monomer of molecular weight 140 000. Each monomer consists of two equivalent polypeptide chains. The protein has a relatively high content of proline, glycine and leucine, and the amino acid composition of rabbit liver aryl sulfatase A is similar to that of other known liver sulfatases. Rabbit liver aryl sulfatase A catalyzes the hydrolysis of a wide variety of sulfate esters, although it appears possible that cerebroside sulfate is a physiological substrate for the enzyme because the Km is very low (0.06 mM). The turnover rate for hydrolysis of nitrocatechol sulfate or related synthetic substrates is much higher than the rate with most naturally occurring sulfate esters such as cereroside sulfate, steroid sulfates, L-tyrosine sulfate or glucose 6-sulfate. However, the turnover rate with ascorbate 2-sulfate is comparable to the rates measured using most synthetic substrates. These results are discussed in relationship to several previously described sulfatase enzymes which were claimed to have unique specificities.  相似文献   

18.
Some properties of a preparation of an enzyme, lunularic acid decarboxylase, from the liverwort Conocephalum conicum are described. The enzyme is normally bound and could be solubilized with Triton X-100; at least some of the bound decarboxylase activity appears to be associated with chloroplasts. For lunularic acid the enzyme has Km 8.7 × 10?5 M (pH 7.8 and 30°). Some substrate analogues have been tested but no other substrate was found. Pinosylvic acid is a competitive inhibitor for the enzyme, Ki 1.2 × 10?4 M (pH 7.8 and 30°). No product inhibition was observed. Lunularic acid decarboxylase activity has also been observed with a cell-free system from Lunularia cruciata.  相似文献   

19.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

20.
SYNOPSIS. Molecular heterogeneity of malic dehydrogenase (MDH) in malaria was shown by zone electrophoresis in potato starch, starch gel, and by enzymatic activity with analogs of the coenzyme diphosphopyridine nucletide. A single anodal peak of MDH characterized the normal duck red blood cell whereas P. lophurae free of the host cell had a cathodal form of the enzyme. Infected duck erythrocytes had a combination of these electrophoretic forms. The isolated enzymes had different pH optima with oxaloacetate as substrate: pH 7.4 for the duck red cell and 6.4 for the plasmodial enzyme. The Km of each enzyme for oxaloacetate varied with the pH. The Km at pH 7.4 was 4.1 and 4.4 × 105 M for parasite and host, respectively, whereas at 6.4 it was 2.0 × 105 M for P. lophurae and 6.3 × 105M for the duck erythrocyte. At pH 7.4 both enzymes were inhibited by oxaloacetate concentrations greater than 10?4 M. P. berghei MDH also had a different electrophoretic character from that of the mouse red blood cell. Quantitatively, MDH activity increased with parasitization, and erythrocyte-free P. lophurae contained approximately twice the activity found in the uninfected duck erythrocyte. The quantity of MDH activity of the infected cell was ca. 50% less than the sum of the activities of the parasite and the uninfected cell. It is suggested that these properties of the parasite MDH may give it a physiologic advantage over the red cell under the conditions which prevail intraerythrocytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号