首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Kotsiuba EP 《Tsitologiia》2011,53(3):242-249
Using immunocytochemistry combined with light and electron microscopy, the distribution and ultrastructure of tyrosine hydroxylase (TH)-immunoreactive neurons in the CNS of bivalve mollusc, Megangulus venulosus, have been studied under the influence of increased temperature and hypoxia. It has been established, that the stress causes changes in the amount of TH and in the structure of TH-immunopositive neurons in all ganglia. The most essential changes in CNS of M. venulosus were revealed after 60 min exposure to increased temperature and hypoxia; degenerative changes in large neurons, reduction of the synapses and reduction of TH-immunoreactivity in neurons and neuropil.  相似文献   

2.
By means of light and electron microscopy methods structural peculiarities of motor nuclei have been studied in the rat spinal cord (17 animals) on the 1st-3d and on the 10th-18th days of postnatal ontogenesis. Synaptic junctions of the gap type are revealed; they are considered as electrotonic synapses. Dendro-somatic and dendrodendritic synaptic junctions of the gap type are found. Together with the electrotonic synapses, morphologically mixed synapses of axo-somatic and axo-axonal types are disclosed; they contain, besides organells, specific for chemical synapses, close opposition areas of pre- and postsynaptic membranes of the gap junction type. Morphologically mixed synapses occur in neuropil of the motor nuclei of the spinal cord in young rats of all age groups studied. Homologous synapses are detected in the motor nuclei of the white mouse spinal cord. Synaptic junctions of the gap type in the mammalian spinal cord could be a substrate of electrical interaction between its motor neurons.  相似文献   

3.
Electron microscopic studies on the spinal motor nuclei in amphibians indicate significant diversity in chemical synapses formed on motoneurones by axonal endings of supra- and intraspinal systems. High ultrastructural specialization was observed among axosomatic, axodendritic and axoaxonal synapses. Several types of axo-spine synapses and axodentritic synaptic complexes of the "glomerular" type were revealed. New data on ultrastructural peculiarities of chemical synapses presented in this paper, together with earlier detailed data on morphologically mixed and electrotonic synapses, increase our knowledge of evolutionary trends in synaptic organization of motoneurones in the spinal cord and suggest the existence of a complex mechanism of integration of synaptic influences in the spinal cord of lower vertebrates.  相似文献   

4.
By means of neurohistological, histochemical and ultramicroscopical techniques it has been revealed that motor innervation of the oesophageal striated muscle tissue in rats and rabbits is performed by amyelinated nervous fibers, that terminate as nervous-muscle synapses. Ultrastructural peculiarities of these synapses are presented as a large amount of synaptic vesicles in the axonal terminal, as a poor ramification of secondary synaptic folds, as a considerable amount of mitochondria in the adjoining sarcoplasm. Reaction to acetylcholinesterase demonstrates that most of the motor nervous terminals belong to the racemose type. They are situated in the oesophageal musculature chaotically and have less area than synapses of the muscle of the locomotor apparatus.  相似文献   

5.
Retrograde transport of cholera toxin conjugated with horseradish peroxidase in the postnatal rat has revealed remarkable features of dendritic fields of vagal motor neurons in the medulla oblongata and cervical spinal cord during the period of early development (0-10 days). At birth, vagal motor neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus, nucleus retroambigualis, nucleus dorsomedials and the spinal nucleus of the accessory nerve are small with relatively few, unbranched processes. The span of the dendritic tree is much smaller than that found in adult animals. By the postnatal Day 2 there are marked changes in the soma as well as in the dendritic tree of these neurons. There is dispersion of the cell bodies within the neuropil as well as an expansion of the total area of the brain stem occupied by these motor neurons and their dendritic processes which show extensive growth and branching. By postnatal Day 3 the most extensive proliferation of these neurons is seen and appears to represent the peak of dendritic growth of vagal motor neurons such that the area occupied by the dendritic tree of a single neuron is three times that seen in an adult rat. This proliferation gradually decreased during the subsequent seven days of early development (i.e. Days 4-10) so that by Day 10 the dendritic span of vagal motor neurons was reduced to about twice the adult size. This growth progressively decreased from Days 10 to 30 at which time adult levels were reached. Ultrastructural examination of these horseradish peroxidase labeled dendrites showed a positive correlation between the number of dendritic processes and the number of axo-dendritic synapses. This was accompanied by an increase in the number of identifiable synaptic junctions. These morphological complexities observed during the period of early development of vagal motor neurons indicate that the vagus nerve undergoes dramatic changes during the period of early development including the establishment of numerous synaptic contacts between vagal afferents and efferents in the brainstem. A number of these changes occur in developing dendritic fields of vagal motor neurons during the first three days of neonatal life. It is reasonable to assume that developmental abnormalities during this "critical period" could produce significant functional changes in the pattern of respiration as well as in the control of airway smooth muscle.  相似文献   

6.
Ultrastructure of neurones and synapses of the cortical associative area of dogs has been studied under conditions of experimental neuroses caused by prolonged informational loads with constant time deficit and high motivational signals significance. Analysis of subcellular reorganization of a number of neuronal and synaptic organelles showed the degenerative changes of afferent conducting systems in various neuropil parts leading to the falling out of definite neuronal groups from stable functional connections and to the disturbance of intracortical interrelations. In the cortex simultaneously with destructive processes, are developing intracellular compensatory-adaptive reactions.  相似文献   

7.
Experimental degeneration was used in this study to determine if the hypoglossal nerve implanted already in the superior cervical ganglion of adult rat under GABA treatment has established morphologically-identifiable synapses with the dendrites of principal ganglion cells. The implanted hypoglossal nerve trunk was cut in a re-operation, and the ganglionic samples were studied by electron microscopy after 0, 6, 12, 24 and 48 h survival times. First signs of degenerative changes were found in the myelinated and non-myelinated axons alike, 6 h after axotomy. The fine-structural signs of degeneration resembled those of the preganglionic nerve fibres. Degenerating nerve terminals establishing synaptic contacts with the dendrites of the principal ganglion cells were also seen, indicating that the axonal sprouts of the implanted hypoglossal nerve established synaptic contacts with the ganglion cells. It remained, however, to be elucidated whether or not these synapses of the hypoglossal nerve are functionally active contacts while the preganglionic innervation is also present within the ganglion.  相似文献   

8.
The monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long-term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures—characterized by neurites with more branches and varicosities—than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, thier processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning-related changes in the structure of sensory neurons. Application of the endogenous facilitatory trasmitter serotonin (5-HT) causes long-term facilitation of in vitro sensorimotor synapses due in part to growth of new presynatpic varicosities. But 5-HT applied to sensory neurons alone in cultuer does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long-term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia syanpses is regulated by the voltage of the postsynaptic cell. Pairing high-frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Habbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

9.
Moshkov  D. A.  Pavlik  L. L.  Tiras  N. R.  Dzeban  D. A.  Mikheeva  I. B. 《Neurophysiology》2003,35(5):361-370
We examined changes in the ultrastructure of afferent mixed synapses on the membrane of Mauthner neurons (M cells) of the goldfish, which were related to two functional states, long-term potentiation (LTP) of the electrotonic response (a model form of the memory trace) and adaptation (resistivity to fatigue resulting from long-lasting motor training and considered a natural form of the memory trace manifested on the neuronal level). LTP was induced in medullary slices using high-frequency electrical stimulation of the afferent input. Adaptation was produced using natural vestibular stimulation (everyday motor training, which modified motor behavior of the fish and function of the M cell). It was supposed that if the LTP phenomenon is involved in the formation of natural memory, both the adaptation and the LTP states should be accompanied by similar specific structural modifications. Indeed, it was found that in both cases the number of fibrillar bridges in the gaps of desmosome-like contacts (DLC) in the mixed synapses on the M cell surface demonstrated an about twofold increase. These bridges are known to include actin filaments, which function as conductors of cationic signals; thus, the LTP-related increase in the density of bridges corresponds to increased efficacy of electrotonic coupling via mixed synapses. Such a structural correlate of LTP, which probably has the same functional significance in mixed synapses of the adapted M cells, allows us to suppose that LTP is a natural property of the nervous system. The LTP-type intensification of the relay function of mixed synapses, which corresponds to adaptation, is probably a compensatory rearrangement allowing M cells to maintain some balance of the synaptic influences and, at the same time, to remain in a stable and plastic state; this is necessary for stable functioning under changing environmental conditions.  相似文献   

10.
Y W Chung  R Hassler 《Acta anatomica》1982,113(3):246-263
After stereotactic lesions in the pallidum in 4 squirrel monkeys, electron microscopic material from the striatum was examined for anterograde and retrograde degenerative changes. In the experiment with pallidum internum lesion, only degenerated striatal fibers were observed, more than likely thalamostriatal fibers that pass through the site of the lesion. The three experiments with pallidum externum lesion revealed that the two types of striatal aspiny neurons react with a penumbral degeneration to interruption of their axons. Also, the axospinous type IV striatal synapses, which originate in the center median or parafascicular nucleus of the the thalamus, react to interruption of their axons in the pallidum externum with the dark or crystalloid forms of degeneration. The plump axospinous type III synapses, which have previously not been differentiated, were the most frequently altered, showing dark, crystalloid, or pale forms of degeneration. Their degeneration can be attributed directly to the lesions of the pallidum externum nerve cells; thus, an immediate connection between the pallidum externum and the striatum has been demonstrated. A comparison of the retrograde degeneration of striated nerve cells after pallidum externum lesions with that following columnar isolation of striatal tissue revealed two overlapping forms of penumbral degeneration of the aspiny neurons.  相似文献   

11.
In mature rats an area on the head has been subjected to a single radiation for 1.5 sec with microwaves in the continuous regimen of generation, frequency 2.4 GHz level of the specific absorbed power 5 W/g, that is accompanied with appearance of convulsions. Under anesthesia specimens of the superficial layer of the cerebral superlateral part are taken and subjected to electron microscopical investigation. Immediately after radiation and in 2 h certain disorders in microcirculation and reactive changes of mitochondria in perikaryons, axons, dendrites, synapses of the neurons and in gliocytes are revealed. The mitochondrial changes are designated as "edematous". In 2 and 6 h in karyoplasm of some neurons membranous structures appear; they are interpreted as a result of heat denaturation of the nuclear proteins. In synapses, together with lesions of mitochondria, synaptic complexes undergo destruction and osmiophilic substance is accumulated in the subsynaptic zone along the whole length of the contact. In one day, essential destructive changes are revealed as severe lesions of some neurons, vacuolization and destruction of mitochondria, localized in all the structures. Pathogenesis of the neurological disturbances is based on disturbances of interneuronal interactions, connected with an immediate heat effect of the electromagnetic radiation on the structures responsible for the synaptic transmission and with a rapidly developing tissue hypoxia as a consequence of microcirculatory disturbance and a sharp inhibition of energetic metabolism.  相似文献   

12.
The relationship between dorsal root afferents and lumbar motoneurons has been studied in the isolated spinal cord of Rana ridibunda tadpoles. It was found that primary afferents do not form direct contacts with "primary" motoneurons innervating the axial musculature used by the larvae in swimming. Monosynaptic connections were revealed only between afferent fibres and lateral motor column motoneurons which innervate the developing hindlimb. The transmission in these synapses was dual: electrical and chemical. During the metamorphic stages when the locomotion is gradually taken over by the developing hindlimbs, an increase of the percentage of motoneurons receiving direct synaptic input from the primary afferents was observed.  相似文献   

13.
Types of synaptic contacts and peculiarities of their distribution in the neuropil of the parietal and visceral ganglia of the edible snail (Helix pomatia) CNS have been studied electron microscopically. Ultrastructure of dendrites and axons has been identified. Dendrites with spinous++ processes, polymorphism of synaptic contacts have been revealed. Besides axo-axonal synapses, axo-dendritic synapses are demonstrated on the trunks and on the spinous processes of the dendrites, as well as dendro-dendritic and serial synapses. Unevenness in distribution of synaptic contacts is shown in the neuropil. The areas of the greatest concentration of the synapses are the "synaptic fields". Peculiarities in distribution of the synaptic contacts are demonstrated in the parietal and visceral ganglia.  相似文献   

14.
Pathophysiology of pH and Ca2+ in bloodstream and brain   总被引:1,自引:0,他引:1  
The highlights of the literature and our work on tetany and hyperventilation are reviewed. Our studies concern the following: (1) the changes of [Ca2+] in circulating plasma caused by respiratory and "metabolic" acidosis and alkalosis; (2) critical plasma [Ca2+] levels associated with signs of tetany and neuromuscular blockade; (3) changes in cerebral [Ca2+]o caused by hypo- and hyper-calcaemia, and the changes in cerebral [Ca2+]o and pHo caused by acute systemic acidosis and alkalosis; and (4) effects of changing [Ca2+]o and pHo levels on synaptic transmission in hippocampal formation. Our main conclusions are (1) changes of plasma [Ca2+] caused by "metabolic" pH changes are greater than those associated with varying CO2 concentration; (2) acute systemic [Ca2+] changes are associated with small cerebral [Ca2+]o changes; (3) the decreases in systemic and cerebral [Ca2+]o caused by hyperventilation are too small to account for the signs and symptoms of hypocapnic tetany; (4) moderate decrease of [Ca2+]o depresses and its increase enhances synaptic transmission in hippocampal formation; and (5) H+ ions in extracellular fluid have a weak depressant effect on neuronal excitability. CO2 is a strong depressant, which is only partly explained by the acidity of its solution. CO2 concentration is a significant factor in controlling cerebral function.  相似文献   

15.
The influence of a 7-day space flight on board the biosputnik "Kosmos-1669" on the neuro-muscular synapses (NMS) of soleus, gastrocnemius and diaphragm muscles distinct in their functions has been studied. The synapse restructuring on the basis of destructive- regenerative process has been discovered. It is manifested to a great extent in the soleus muscle, to a lesser extent in the gastrocnemius muscle and the least of all in the diaphragm muscle. The changes observed in synapses may be caused by the attenuation of their function in weightlessness.  相似文献   

16.
Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages. Existing symptomatic treatments further complicate with overt drug-irresponsive symptoms. PD is better understood by assimilation of extranigral degenerative pathways with nigrostriatal degenerative mechanisms. The term 'extranigral' appeared first in the 1990s to more rigorously define the nigral pathology by process of elimination. However, as clinicians progressively identified PD symptoms unresponsive to the gold standard drug l-DOPA, definitions of PD symptoms were redefined. Non-motor symptoms prodromal to motor symptoms just as pre-clinical to clinical, and conjointly emerged the concept of nigral versus extranigral degeneration in PD. While nigrostriatal degeneration is responsible for the neurobiological substrates of extrapyramydal motor features, extranigral degeneration corroborates a vast majority of other changes in discrete central, peripheral, and enteric nervous system nuclei, which together account for global symptoms of the human disease. As an extranigral site, spinal cord degeneration has also been implicated in PD progression. Interconnected to the upper CNS structures with descending and ascending pathways, spinal neurons participate in movement and sensory circuits, controlling movement and reflexes. Several clinical and in vivo studies have demonstrated signs of parkinsonism-related degenerative processes in spinal cord, which led to recent consideration of spinal cord as an area of potential therapeutic target. In a nutshell, this review explores how the existing animal models can actually reflect the human disease in order to facilitate PD research. Evolution of extranigral degeneration studies has been succinctly revisited, followed by a survey on animal models in light of recent findings in clinical PD. Together, it may help to develop effective therapeutic strategies for PD.  相似文献   

17.
The distribution and ultrastructure of terminals of corticofugal fibers in the cat rhombencephalon were investigated under the optical and electron microscopes at different periods (2–6 days) of experimental degeneration evoked by destruction of the sensomotor cortex. It was shown by the Fink–Heimer method that most degenerating fibers are distributed in the reticular nuclei of the pons and medulla. Massive degeneration of corticofugal fibers also was observed in the nuclei of the dorsal columns (nuclei of Goll and Burdach). Most of the degenerating (the "pale" type of degeneration) axo-dendritic and axo-somatic synapses in the gigantocellular reticular nucleus and the nucleus of Goll retained spherical vesicles. Small endings were found on the branches of the dendrites in which degenerative changes were of the "dark" type. The topography of the degenerating elements and axo-axonal synapses was studied in large areas of sections by the coordinate grid method. The dimensions of most degenerating axons in the gigantocellular reticular nucleus were greater (1.5 µ) than those of the degenerating axons (0.5 µ) in the nucleus of Goll. Most endings of pyramidal fibers and axo-axonal synapses are located in the central part of the nucleus of Goll at a depth of 0.5–1.2 mm from the brain surface. The results are discussed in connection with electrophysiological studies of the mechanisms of cortical control over unit activity of the reticular formation of the brain stem and nuclei of the dorsal columns.  相似文献   

18.
The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.  相似文献   

19.
In this review we present recent evidence implicating second-messenger systems in two forms of long-lasting synaptic change seen at crustacean neuromuscular junctions. Crustacean motor axons are endowed with numerous terminals, each possessing many individual synapses. Some synapses appear to be quiescent or impotent, but can be recruited in response to imposed functional demands. Supernormal impulse activity leads to long-term facilitation (LTF) which persists for many hours. During the persistent phase, additional synapses are physiologically effective, and morphological changes in synapses are seen at the ultrastructural level. Pulsatile application of serotonin, a neuromodulator, also enhances synaptic transmission, but this enhancement declines more rapidly than LTF. Elevation of intraterminal Ca2+ is neither necessary nor sufficient for long-lasting enhancement of transmission, but activation of A-kinase is necessary. LTF is set in motion by an unknown depolarization-dependent mechanism leading to A-kinase activation, whereas serotonin facilitation depends for its initiation on the phosphatidylinositol system. The initial phase of serotonin facilitation may be accounted for by production of inositol triphosphate, whereas the secondary long-lasting phase appears to require participation of both C kinase and A kinase. Neither LTF nor serotonin facilitation requires an intact neuron; both are presynaptic phenomena expressed by the nerve terminals. Brief comparison is made with long-lasting synaptic changes in other systems.  相似文献   

20.
Structural-functional reconstructions of the frog autonomic interneuronal synapsis have been studied at its activation with endogenic acetylcholine under conditions of acetylcholinesterase suppression. The investigation has been performed with preparations of isolated sympathetic trunk of Rana temporaria treated with armine (5 X 10(-6) M) and subjected to electrostimulation (5 imp/sec) up to a complete block of the synaptic transmission. Certain structural changes are revealed in the axo-somatic synapses, demonstrating an increased adhesive properties of the membranes, ("hatch-like" membranes, numerous submembranous aggregates, aggregates of the intercellular cleft and neuronal-glial contacts). In the terminals changed according to the "light type", with poorly manifested changes, light synaptic vesicles loose their spheric form, their diameter decreases. In the boutons with more intensive changes, the vesicles gradually change into the mass of cluster-floccular material. In the boutons with intensively manifested disorders in the ultrastructure, a complete destruction of the light vesicles is observed. The great part of the ganglionic neuron bodies changes according the "dark type". In their neuroplasm a great amount of subsuperficial cisterns of the endoplasmic reticulum and formation of powerful fasciculi of microfilaments are noted to appear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号