首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ(TM) labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca(2+)-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.  相似文献   

2.
3.
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.  相似文献   

4.
Ono Y  Hayashi C  Doi N  Tagami M  Sorimachi H 《FEBS letters》2008,582(5):691-698
p94/calpain 3, a skeletal muscle-specific member of calpain protease family, is characterized by apparent Ca(2+)-independence during exhaustive autolysis and concomitant proteolysis of non-self substrates. The purpose of our study was to comprehensively profile the structural basis of p94 enabling activation in the cytosol without an extra Ca(2+). Ca(2+)-dependent p94 mutants were screened using "p94-trapping", which is an application of yeast genetic reporter system called "proteinase-trapping". Several amino acids were revealed as critical for apparent Ca(2+)-independent p94 activity. These results highlight the importance of conserved amino acids in domain IIb as well as in the p94-specific IS2 region.  相似文献   

5.
6.
p94/calpain 3 is a Ca(2+)-binding intracellular protease predominantly expressed in skeletal muscles. p94 binds to the N2A and M-line regions of connectin/titin and localizes in the Z-bands. Genetic evidence showing that compromised p94 proteolytic activity leads to muscular dystrophy (limb-girdle muscular dystrophy type 2A) indicates the importance of p94 function in myofibrils. Here we show that a series of p94 splice variants is expressed immediately after muscle differentiation and differentially change localization during myofibrillogenesis. We found that the endogenous N-terminal (but not C-terminal) domain of p94 was not only localized in the Z-bands but also directly bound to sarcomeric alpha-actinin. These data suggest the incorporation of proteolytic N-terminal fragments of p94 into the Z-bands. In myofibrils localization of exogenously expressed p94 shifted from the M-line to N2A as the sarcomere lengthens beyond approximately 2.6 and 2.8 microm for wild-type and proteaseinactive p94, respectively. These data demonstrate for the first time that p94 proteolytic activity is involved in responses to muscle conditions, which may explain why p94 inactivation causes limb-girdle muscular dystrophy.  相似文献   

7.
8.
While conventional calpains, m- and mu-calpains named according to their calcium-dependence, are expressed in almost every tissues, mRNA of newly identified p94, which has a significant sequence similarity to the conventional calpain large subunits, is abundantly expressed only in skeletal muscle. In addition to this specific expression, p94 is distinct from conventional calpains in that it contains three unique regions showing no similarity to conventional calpain subunits. When rat and human p94 are compared, overall sequence similarity is 94.0%, which is close to those for m- and mu-calpain large subunits; 93.1% and 95.4% between human and rabbit, respectively, suggesting the evolutionary importance of p94. These calpain large subunit proteins, p94, m- and mu-types, can be considered to constitute a super family, whose p94, m- and mu-types represent the three major types. Sequences of the calpain large-subunit family members, including the recently reported Schistosoma calpain, are compared. Their evolutionary correlation and function are discussed on the basis of the results thus far obtained.  相似文献   

9.
10.
11.
p94/calpain 3 is a skeletal muscle-specific Ca(2+)-regulated cysteine protease (calpain), and genetic loss of p94 protease activity causes muscular dystrophy (calpainopathy). In addition, a small in-frame deletion in the N2A region of connectin/titin that impairs p94-connectin interaction causes a severe muscular dystrophy (mdm) in mice. Since p94 via its interaction with the N2A and M-line regions of connectin becomes part of the connectin filament system that serves as a molecular scaffold for the myofibril, it has been proposed that structural and functional integrity of the p94-connectin complex is essential for health and maintenance of myocytes. In this study, we have surveyed the interactions made by p94 and connectin N2A inside COS7 cells. This revealed that p94 binds to connectin at multiple sites, including newly identified loci in the N2A and PEVK regions of connectin. Functionally, p94-N2A interactions suppress p94 autolysis and protected connectin from proteolysis. The connectin N2A region also contains a binding site for the muscle ankyrin repeat proteins (MARPs), a protein family involved in the cellular stress responses. MARP2/Ankrd2 competed with p94 for binding to connectin and was also proteolyzed by p94. Intriguingly, a connectin N2A fragment with the mdm deletion possessed enhanced resistance to proteases, including p94, and its interaction with MARPs was weakened. Our data support a model in which MARP2-p94 signaling converges within the N2A connectin segment and the mdm deletion disrupts their coordination. These results also implicate the dynamic nature of connectin molecule as a regulatory scaffold of p94 functions.  相似文献   

12.
13.
14.
15.
16.
p94 (also called calpain 3) is the skeletal muscle-specific calpain and is considered to be a "modulator protease" in various cellular processes. Analysis of p94 at the protein level is an urgent issue because the loss of p94 protease activity causes limb-girdle muscular dystrophy type 2A. In this study, we enzymatically characterized one alternatively spliced variant of p94, p94:exons 6(-)15(-)16(-) (p94delta), which lacks two of the p94-specific insertion sequences. In contrast to p94, which has hardly been studied enzymatically due to its rapid, thorough, and apparently Ca(2+)-independent autolytic activity, p94delta was stably expressed in COS and insect cells. p94delta showed Ca(2+)-dependent caseinolytic and autolytic activities and an inhibitor spectrum similar to those of the conventional calpains. However, calpastatin did not inhibit p94delta and is a substrate for p94delta, which is consistent with the properties of p94, presenting p94 as a possible regulator of the conventional calpain system. We also established a semi-quantitative fluorescence resonance energy transfer assay using the calpastatin sequence specifically to measure p94 activity. This method detects the activity of COS-expressed p94 and p94delta, suggesting that it has potential to evaluate p94 activity in vivo and in the diagnosis of limb-girdle muscular dystrophy type 2A.  相似文献   

17.
Polypeptide growth factors activate specific transmembrane receptors, leading to the induction of multiple intracellular signal transduction pathways which control cell function and fate. Recent studies have shown that growth factors promote cell survival by stimulating the serine-threonine protein kinase Akt, which appears to function primarily as an antiapoptotic agent by inactivating death-promoting molecules. We previously established C2 muscle cell lines lacking endogenous expression of insulin-like growth factor II (IGF-II). These cells underwent apoptotic death in low-serum differentiation medium but could be maintained as viable myoblasts by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we show that IGF-I promotes muscle cell survival through Akt-mediated induction of the cyclin-dependent kinase inhibitor p21. Treatment of myoblasts with IGF-I or transfection with an inducible Akt maintained muscle cell survival and enhanced production of p21, and ectopic expression of p21 was able to sustain viability in the absence of growth factors. Blocking of p21 protein accumulation through a specific p21 antisense cDNA prevented survival regulated by IGF-I or Akt but did not block muscle cell viability mediated by PDGF-BB. Our results define Akt as an intermediate and p21 as a critical effector of an IGF-controlled myoblast survival pathway that is active during early myogenic differentiation and show that growth factors are able to maintain cell viability by inducing expression of pro-survival molecules.  相似文献   

18.
19.
As previously suggested by PCR analysis [R. DeTullio, R. Stifanese, F. Salamino, S. Pontremoli, E. Melloni, Characterization of a new p94-like calpain form in human lymphocytes, Biochem. J. 375 (2003) 689-696], a p94-like calpain was now established to be present in six different human cells resembling the various peripheral blood cell types. This protease resulted to be the predominant calpain isoforms whereas the conventional mu- and m-calpains are also expressed although at lower or almost undetectable amounts. The p94-like calpain has been identified by a specific mAb and displays unique features such as: Ca2+ requirement for half maximum activity around 30 microM; no autolytic conversion to a low Ca2+ requiring form and lower sensitivity to calpastatin inhibition. Following cell stimulation, the p94-like calpain undergoes inactivation, a process indicating that the protease is activated and participates in the cell responses to stimuli. The involvement of this protease isoform in immunocompetent cell activation is further supported by its partial recruitment on plasma membranes, the site of action of the conventional calpain forms. The amount of calpain translocated to the membranes correlates to the level of calpastatin which has been shown to control this process through the formation of a complex with calpain, which maintains the protease in the cytosol. These results provide new information on the calpain/calpastatin system expressed in immunocompetent cells and on the functional relationship between the p94-like calpain and the biological function of these cells.  相似文献   

20.
The stress-activated signaling pathways, p53 and NF-κB, have a major role in the regulation of cellular senescence and organismal aging. These ancient signaling networks display functional antagonism via negative autoregulatory circuits. WIP1 (wildtype p53-induced phosphatase 1) and MIF (macrophage migration inhibitory factor) are signaling molecules which link together the p53 and NF-κB pathways via positive and negative feedback loops. It seems that the efficiency of the p53 signaling pathway declines during aging whereas that of NF-κB is clearly enhanced. Moreover, p53 is an important trigger of cellular senescence while NF-κB signaling seems to be involved in the induction of the senescence-associated secretory phenotype (SASP). MIF is a pro-inflammatory cytokine which inhibits the function of p53 signaling whereas it is linked to NF-κB signaling via a positive feedback loop. MIF knockout mice are healthier and live longer than their wild-type counterparts. An increased level of MIF can support inflammatory responses via enhancing NF-κB signaling and repressing the function of p53. p53 is an inducer of the expression of WIP1 which can subsequently inhibit NF-κB signaling. Several observations indicate that the activity of WIP1 decreases during the aging process, this being probably attributable to the decline in p53 function. Decreased WIP1 activity potentiates the activity of p38MAPK and NF-κB signaling leading to premature cellular senescence as well as low-level chronic inflammation. We will review the findings linking WIP1 and MIF to specific signaling responses of p53 and NF-κB and discuss their role in the regulation of cellular senescence and organismal aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号