共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence 总被引:255,自引:0,他引:255
C Murre P S McCaw H Vaessin M Caudy L Y Jan Y N Jan C V Cabrera J N Buskin S D Hauschka A B Lassar 《Cell》1989,58(3):537-544
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent homodimers. The HLH domain can mediate heterodimer formation between either daughterless, E12, or E47 (Class A) and achaete-scute T3 or MyoD (Class B) to form proteins with high affinity for the kappa E2 site in the immunoglobulin kappa chain enhancer. The achaete-scute T3 and MyoD proteins do not form kappa E2-binding heterodimers together, and no active complex with N-myc was evident. The formation of a heterodimer between the daughterless and achaete-scute T3 products may explain the similar phenotypes of mutants at these two loci and the genetic interactions between them. A role of E12 and E47 in mammalian development, analogous to that of daughterless in Drosophila, is likely. 相似文献
2.
We searched for F-box proteins that might be related to the mechanism that protects Saccharomyces cerevisiae against the toxic effects of methylmercury. We found that overexpression of Hrt3 and of Ylr224w rendered yeast cells resistant to methylmercury. Yeast cells that overexpressed Hrt3 and Ylr224w were barely resistant to methylmercury in the presence of a proteasome inhibitor. Our results suggest the existence of some protein(s) that enhances the toxicity of methylmercury in yeast cells and, also, that overexpression of Hrt3 or Ylr224w can confer resistance to methylmercury by enhancing the polyubiquitination of this protein(s) and its degradation in proteasomes. 相似文献
3.
Ana Cristina Adam Gracia Gonzlez-Blasco Marta Rubio-Texeira Julio Polaina 《Applied microbiology》1999,65(12):5303-5306
We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transform E. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Ampr gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per μg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare. 相似文献
4.
Identification of cellular factors that bind specifically to the Epstein-Barr virus origin of DNA replication. 总被引:3,自引:0,他引:3 下载免费PDF全文
The specific binding of HeLa cell factors to DNA sequences at the Epstein-Barr virus (EBV) latent origin of DNA replication was detected by gel shift experiments and DNase I footprinting analysis. These cellular proteins protected at least five discrete regions of the DNA replication origin. The viral protein required for EBV plasmid replication, EBV nuclear antigen 1 (EBNA-1), binds to specific sequences within the origin region. The HeLa cell proteins competed with EBNA-1 for binding to EBV origin DNA in vitro, leading to the possibility that these cellular proteins regulate EBV DNA replication by displacing EBNA-1 at the origin sites. 相似文献
5.
Adam AC González-Blasco G Rubio-Texeira M Polaina J 《Applied and environmental microbiology》1999,65(12):5303-5306
We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transform E. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Amp(r) gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per microg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare. 相似文献
6.
Recognition of DNA insertion/deletion mismatches by an activity in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1 下载免费PDF全文
An activity in nuclear extracts of S.cerevisiae binds specifically to heteroduplexes containing four to nine extra bases in one strand. The specificity of this activity (IMR, for insertion mismatch recognition) in band shift assays was confirmed by competition experiments. IMR is biochemically and genetically distinct from the MSH2 dependent, single base mismatch binding activity. The two activities migrate differently during electrophoresis, they are differentially competable and their spectra of mispair binding are distinct. Furthermore, IMR activity is observed in extracts from an msh2- msh3- msh4- strain. IMR exhibits specificity for insertion mispairs in two different sequence contexts. Binding is influenced by the structure of the mismatch since an insertion with a hairpin configuration is not recognized by this activity. IMR does not result from single-strand binding because single-stranded probes to not yield IMR complex and single-stranded competitors are unable to displace insertion heteroduplexes from the complex. Similar results with intrinsically bent duplexes make it unlikely that recognition is conferred by a bend alone. Heteroduplexes bound by IMR do not contain any obvious damage. These findings are consistent with the idea that yeast contains a distinct recognition factor, IMR that is specific for insertion/deletion mismatches. 相似文献
7.
8.
Enteropathogenic Escherichia coli (EPEC) is an enteric human pathogen responsible for much worldwide morbidity and mortality. EPEC uses a type III secretion system to inject bacterial proteins into the cytosol of intestinal epithelial cells to cause diarrheal disease. We are interested in determining the host proteins to which EPEC translocator and effector proteins bind during infection. To facilitate protein enrichment, we created fusions between GST and EPEC virulence proteins, and expressed these fusions individually in Saccharomyces cerevisiae. The biology of S. cerevisiae is well understood and often employed as a model eukaryote to study the function of bacterial virulence factors. We isolated the yeast proteins that interact with individual EPEC proteins by affinity purifying against the GST tag. These complexes were subjected to ICAT combined with ESI-MS/MS. Database searching of sequenced peptides provided a list of proteins that bound specifically to each EPEC virulence protein. The dataset suggests several potential mammalian targets of these proteins that may guide future experimentation. 相似文献
9.
Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. 总被引:2,自引:2,他引:2 下载免费PDF全文
By screening lambda gt11 libraries with a radiolabeled (TG1-3)n oligonucleotide, two Saccharomyces cerevisiae genes were identified that encode polypeptides that recognize the single-stranded telomeric repeat sequence (TG1-3)n. The first gene, NSR1, a previously identified gene, encodes a protein involved in ribosomal RNA maturation and possibly in transport of proteins into the nucleus. The second gene, GBP2 (G-strand Binding Protein), is an anonymous open reading frame from chromosome III. These two genes contain RNA recognition motifs (RRMs) that are found in proteins that interact with RNA. Both Nsr1p and Gbp2p bind specifically to yeast single strand (TG1-3)n DNA in vitro. To test whether these two proteins associate with telomeres in vivo, strains were constructed in which one or both of these genes were either disrupted or overexpressed. None of these alterations affected telomere length or telomere position effect. The potential role of these two (TG1-3)n binding proteins is discussed. 相似文献
10.
Ide T Baik SH Matsuba T Harayama S 《Bioscience, biotechnology, and biochemistry》2003,67(6):1335-1341
The four peptides interacting with H7 flagellin of Escherichia coli were selected from a phage display library. The library was selected four times, and the interacting phage peptides were competitively eluted with H7 flagellin. An enzyme-linked immunosorbent assay (ELISA) showed that these peptides were reactive with the H7 flagellin in a dose-dependent manner. Among them, a D1 phage clone showed the highest binding affinity to the H7 flagellin. We synthesized the D1 peptide (LHIHRPTLSIQG) corresponding to the peptide-encoding region of the D1 phage clone. The synthetic peptide showed micro-molar affinity (EC(50) value=1.9 microM) for the H7 flagellin. Furthermore, this D1 peptide interacted more specifically with the H7 flagellin than with the other flagellins (H1, H5, H12, or H23) of E. coli. In situ hybridization clearly showed that the peptide only detected those cells harboring the H7 flagellin gene (fliC). The peptide may specifically bind to the H7 flagellin on the cell surface. These results suggest that the phage-display technique could be used as a tool for identifying peptides as an alternative to using a ligand as a diagnostic reagent in food products or in clinical testing. 相似文献
11.
The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. 总被引:2,自引:2,他引:2 下载免费PDF全文
E Alani 《Molecular and cellular biology》1996,16(10):5604-5615
The yeast Saccharomyces cerevisiae encodes six proteins, Msh1p to Msh6p, that show strong amino acid sequence similarity to MutS, a central component of the bacterial mutHLS mismatch repair system. Recent studies with humans and S. cerevisiae suggest that in eukaryotes, specific MutS homolog complexes that display unique DNA mismatch specificities exist. In this study, the S. cerevisiae 109-kDa Msh2 and 140-kDa Msh6 proteins were cooverexpressed in S. cerevisiae and shown to interact in an immunoprecipitation assay and by conventional chromatography. Deletion analysis of MSH2 indicated that the carboxy-terminal 114 amino acids of Msh2p are important for Msh6p interaction. Purified Msh2p-Msh6p selectively bound to duplex oligonucleotide substrates containing a G/T mismatch and a +1 insertion mismatch but did not show specific binding to +2 and +4 insertion mismatches. The mismatch binding specificity of the Msh2p-Msh6p complex, as measured by on-rate and off-rate binding studies, was abolished by ATP. Interestingly, palindromic substrates that are poorly repaired in vivo were specifically recognized by Msh2p-Msh6p; however, the binding of Msh2p-Msh6p to these substrates was not modulated by ATP. Taken together, these studies suggest that the repair of a base pair mismatch by the Msh2p-Msh6p complex is dependent on the ability of the Msh2p-Msh6p-DNA mismatch complex to use ATP hydrolysis to activate downstream events in mismatch repair. 相似文献
12.
13.
Limited proteolysis of human plasma fibronectin with chymotrypsin, trypsin or thermolysin has been used to localize binding sites responsible for binding [Vuento, Korkolainen & Stenman (1982) Biochem. J. 205, 303-311] of fibronectin to carboxy-group-modified proteins. These bindings sites are different from those mediating binding of fibronectin to gelatin or heparin. They are located close to the C-terminus of the polypeptide chains of fibronectin, and apparently overlap with the C-terminal fibrin binding site. 相似文献
14.
Ribosome display is an in vitro selection and evolution technology for proteins and peptides from large libraries. As it is performed entirely in vitro, there are two main advantages over other selection technologies. First, the diversity of the library is not limited by the transformation efficiency of bacterial cells, but only by the number of ribosomes and different mRNA molecules present in the test tube. Second, random mutations can be introduced easily after each selection round, as no library must be transformed after any diversification step. This allows facile directed evolution of binding proteins over several generations. A prerequisite for the selection of proteins from libraries is the coupling of genotype (RNA, DNA) and phenotype (protein). In ribosome display, this link is accomplished during in vitro translation by stabilizing the complex consisting of the ribosome, the mRNA and the nascent, correctly folded polypeptide. The DNA library coding for a particular library of binding proteins is genetically fused to a spacer sequence lacking a stop codon. This spacer sequence, when translated, is still attached to the peptidyl tRNA and occupies the ribosomal tunnel, and thus allows the protein of interest to protrude out of the ribosome and fold. The ribosomal complexes are allowed to bind to surface-immobilized target. Whereas non-bound complexes are washed away, mRNA of the complexes displaying a binding polypeptide can be recovered, and thus, the genetic information of the binding polypeptides is available for analysis. Here we describe a step-by-step procedure to perform ribosome display selection using an Escherichia coli S30 extract for in vitro translation, based on the work originally described and further refined in our laboratory. A protocol that makes use of eukaryotic in vitro translation systems for ribosome display is also included in this issue. 相似文献
15.
16.
Weebadda WK Hoover GJ Hunter DB Hayes MA 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2001,130(3):299-312
Some serovars of Escherichia coli, mainly O2 and O78, are responsible for air sac and systemic infections in farm-raised turkeys (Meleagris gallopavo) and chickens (Gallus gallus). We looked in air sac surface fluid from young turkeys to identify proteins that bind surface polysaccharides of pathogenic respiratory E. coli O2. Turkey air sac surface fluid was subjected to affinity chromatography on Toyopearl AF-Epoxy-650M, coupled with either lipopolysaccharide (LPS) or lipid-free polysaccharide (LFP) purified from an avian pathogenic E. coli O2 isolate. A multimeric protein termed lipid-free polysaccharide binding protein-40 (LFPBP-40) composed of six covalently associated subunits of approximately 40 kDa was isolated by elution from LFP by EDTA or L-rhamnose. An analogous protein in air sac fluid proteins bound to intact E. coli O2 and eluted with L-rhamnose or N-acetylglucosamine (GlcNAc). The N-terminal amino acid sequence of LFPBP-40 DINGGGATLPQHLYLTPDV was related to the N-terminus of fragment 3 of a partially characterized human protein possessing T cell stimulation activity in synovial membrane of rheumatoid arthritis patients. However, endogenous amino acid sequences were unrelated to other known proteins. LFPBP-40 was immunoreactively distinct from pulmonary collectins and ficolins. These studies demonstrate a novel avian respiratory soluble lectin that can bind surface polysaccharides of pathogenic E. coli responsible for respiratory disease. 相似文献
17.
Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells 总被引:1,自引:0,他引:1
In Escherichia coli, tyrosyl-tRNA synthetase is known to esterify tRNA(Tyr) with tyrosine. Resulting d-Tyr-tRNA(Tyr) can be hydrolyzed by a d-Tyr-tRNA(Tyr) deacylase. By monitoring E. coli growth in liquid medium, we systematically searched for other d-amino acids, the toxicity of which might be exacerbated by the inactivation of the gene encoding d-Tyr-tRNA(Tyr) deacylase. In addition to the already documented case of d-tyrosine, positive responses were obtained with d-tryptophan, d-aspartate, d-serine, and d-glutamine. In agreement with this observation, production of d-Asp-tRNA(Asp) and d-Trp-tRNA(Trp) by aspartyl-tRNA synthetase and tryptophanyl-tRNA synthetase, respectively, was established in vitro. Furthermore, the two d-aminoacylated tRNAs behaved as substrates of purified E. coli d-Tyr-tRNA(Tyr) deacylase. These results indicate that an unexpected high number of d-amino acids can impair the bacterium growth through the accumulation of d-aminoacyl-tRNA molecules and that d-Tyr-tRNA(Tyr) deacylase has a specificity broad enough to recycle any of these molecules. The same strategy of screening was applied using Saccharomyces cerevisiae, the tyrosyl-tRNA synthetase of which also produces d-Tyr-tRNA(Tyr), and which, like E. coli, possesses a d-Tyr-tRNA(Tyr) deacylase activity. In this case, inhibition of growth by the various 19 d-amino acids was followed on solid medium. Two isogenic strains containing or not the deacylase were compared. Toxic effects of d-tyrosine and d-leucine were reinforced upon deprivation of the deacylase. This observation suggests that, in yeast, at least two d-amino acids succeed in being transferred onto tRNAs and that, like in E. coli, the resulting two d-aminoacyl-tRNAs are substrates of a same d-aminoacyl-tRNA deacylase. 相似文献
18.
Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. 总被引:6,自引:3,他引:6 下载免费PDF全文
The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway. 相似文献
19.
20.
Escherichia coli endonuclease IV and its Saccharomyces cerevisiae homologue Apn1, two DNA repair enzymes for free radical damages, were previously shown to be inactivated by metal-chelating agents. In the present study, atomic absorption spectrometry of endonuclease IV revealed the presence of 2.4 zinc and 0.7 manganese atoms, whereas Apn1 contained 3.3 zinc atoms and no significant manganese. EDTA-inactivated endonuclease IV retained 0.7 zinc atom but little detectable manganese. ZnCl2 reactivated 1,10-phenanthroline-treated Apn1, but was ineffective with endonuclease IV treated with either 1,10-phenanthroline or EDTA. In contrast, enzymatic activity was restored to both enzymes after EDTA treatment by incubation with CoCl2 and to a lesser extent by MnCl2. Endonuclease IV, reactivated with CoCl2 or MnCl2, regained all of the activities characteristic of the native enzyme. MnCl2 was as effective as CoCl2 at restoring activity to the 1,10-phenanthroline-treated enzymes. The results indicate that intrinsic metals play critical roles in both endonuclease IV and Apn1 and that manganese may perform a special function in endonuclease IV. Possible mechanistic roles for the metals in these DNA repair enzymes are discussed. 相似文献