首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF) exists both as a membrane-integrated type II precursor protein and a soluble cytokine that have different bioactivities on TNFR2 (CD120b) but not on TNFR1 (CD120a). To identify the molecular basis of this disparity, we have investigated receptor chimeras comprising the cytoplasmic part of Fas (CD95) and the extracellular domains of the two TNF receptors. The membrane form of TNF, but not its soluble form, was capable of inducing apoptosis as well as activation of c-Jun N-terminal kinase and NF-kappaB via the TNFR2-derived chimera. In contrast, the TNFR1-Fas chimera displayed strong responsiveness to both TNF forms. This pattern of responsiveness is identical to that of wild type TNF receptors, demonstrating that the underlying mechanisms are independent of the particular type of the intracellular signaling machinery and rather are controlled upstream of the intracellular domain. We further demonstrate that the signaling strength induced by a given ligand/receptor interaction is regulated at the level of adaptor protein recruitment, as shown for FADD, caspase-8, and TRAF2. Since both incidents, strong signaling and robust adapter protein recruitment, are paralleled by a high stability of individual ligand-receptor complexes, we propose that half-lives of individual ligand-receptor complexes control signaling at the level of adaptor protein recruitment.  相似文献   

2.
Members of the G-protein-coupled receptor superfamily (GPCRs) undergo homo- and/or hetero-oligomerization to induce cell signaling. Although some of these show constitutive activation, it is not clear how such GPCRs undergo homo-oligomerization with transmembrane helix movement. We previously reported that angiotensin II (Ang II) type 2 (AT(2)) receptor, a GPCR, showed constitutive activation and induced apoptosis independent of its ligand, Ang II. In the present study, we analyzed the translocation and oligomerization of the AT(2) receptor with transmembrane movement when the receptor induces cell signaling. Constitutively active homo-oligomerization, which was due to disulfide bonding between Cys(35) in one AT(2) receptor and Cys(290) in another AT(2) receptor, was localized in the cell membrane without Ang II stimulation and induced apoptosis without changes in receptor conformation. These results provide the direct evidence that the constitutively active homo-oligomeric GPCRs by intermolecular interaction in two extracellular loops is translocated to the cell membrane and induces cell signaling independent of receptor conformation and ligand stimulation.  相似文献   

3.
Antiproliferative factor (APF) is a low molecular weight sialoglycopeptide that is secreted by bladder cells from interstitial cystitis patients and is a potent inhibitor of both normal bladder epithelial and bladder carcinoma cell proliferation. We hypothesized that APF may produce its antiproliferative effects by binding to a transmembrane receptor. This study demonstrates that cytoskeleton-associated protein 4/p63 (CKAP4/p63), a type II transmembrane receptor, binds with high affinity to APF. The antiproliferative activity of APF is effectively inhibited by preincubation with anti-CKAP4/p63-specific antibodies, as well as by short interfering RNA knockdown of CKAP4/p63. Immunofluorescent confocal microscopy showed co-localization of anti-CKAP4/p63 and rhodamine-labeled synthetic APF binding in both cell membrane and perinuclear areas. APF also inhibits the proliferation of HeLa cervical carcinoma cells that are known to express CKAP4/p63. These data indicate that CKAP4/p63 is an important epithelial cell receptor for APF.  相似文献   

4.
Tumor necrosis factor (TNF) is a multipotential cytokine known to regulate the growth of a wide variety of normal and tumor cells. It has been shown that the density of cells in culture can modulate the growth regulatory activities of TNF, the mechanism of which, however, is not understood. In this report, we investigated the effect of cell density on the expression of TNF receptors. The receptors were examined on epithelial cells (e.g., HeLa), which primarily express the p60 form, and on myeloid cells (e.g., HL-60) known to express mainly the p80 form. We observed that binding of TNF to both cell lines decreased with increase in cell density. Scatchard analysis of binding on HeLa and HL-60 cells revealed a 4- to 5-fold reduction in the number of TNF receptors without any significant change in receptor affinity in both cell types at high density. The decrease in TNF receptor numbers at high cell density was also observed in several other epithelial and myeloid cell lines. The downmodulation at high cell density was unique to TNF receptors, since minimum change in other cell surface proteins was observed as revealed by fluorescent activated cell sorter analysis. Neutralization of binding with antibodies specific to each type of the receptors revealed that both the p60 and p80 forms of the TNF receptor were equally downmodulated. A decrease in leucine incorporation into proteins was observed with increase in cell density, suggesting a reduction in protein synthesis. Since inhibition of protein synthesis by cycloheximide also leads to a decrease in TNF receptors, it is possible that the density-dependent reduction in TNF receptor number is due to an overall decrease in protein synthesis. The density-dependent decrease in TNF receptors was accompanied by a decrease in intracellular reduced glutathione levels. A reduction in the number of receptors on TNF sensitive tumor cells induced by cell-density correlated with increase in resistance to the cytokine.  相似文献   

5.
Extracellular signal‐regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl‐2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK‐1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase‐deficient form of ERK‐1 (K71R) were more sensitive to TNF and CHX. In the ERK‐1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK‐1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK‐1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK‐1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase‐8 inhibitor IETD‐FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c‐Jun N‐terminal kinases activator, increased TNF‐killing. The ERK‐1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK‐1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. J. Cell. Biochem. 108: 1166–1174, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Endocytosis positively and negatively regulates cell surface receptor signaling by temporally and spatially controlling interactions with downstream effectors. This process controls receptor-effector communication. However, the relationship between receptor endocytic trafficking and cell physiology is unclear. In MDA-MB-468 cells, cell surface EGF receptors (EGFRs) promote cell growth, whereas intracellular EGFRs induce apoptosis, making these cells an excellent model for studying the endocytic regulation of EGFR signaling. In addition, MDA-MB-468 cells have limited EGFR degradation following stimulation. Here, we report that in MDA-MB-468 cells the phosphorylated EGFR accumulates on the limiting membrane of the endosome with its carboxyl terminus oriented to the cytoplasm. To determine whether perturbation of EGFR trafficking is sufficient to cause apoptosis, we used pharmacological and biochemical strategies to disrupt EGFR endocytic trafficking in HeLa cells, which do not undergo EGF-dependent apoptosis. Manipulation of HeLa cells so that active EGF·EGFRs accumulate on the limiting membrane of endosomes reveals that receptor phosphorylation is sustained and leads to apoptosis. When EGF·EGFR complexes accumulated in the intraluminal vesicles of the late endosome, phosphorylation of the receptor was not sustained, nor did the cells undergo apoptosis. These data demonstrate that EGFR-mediated apoptosis is initiated by the activated EGFR from the limiting membrane of the endosome.  相似文献   

7.
Trophoblasts, the fetal cells that line the villous placenta and separate maternal blood from fetal tissue, express both Fas antigen and the tumor necrosis factor (TNF) receptor p55 (TNFRp55), two members of the TNF receptor family that contain a cytoplasmic "death domain" that mediates apoptotic signals. We show that Fas mRNA expressed by cultured villous cytotrophoblasts isolated from term placentas encodes transmembrane sequences and that the protein is full-length (approximately 45 kDa), suggesting that the product is an active plasma membrane-anchored receptor. Its location on the cell surface was confirmed by cellular ELISA analysis of live cells. Although cytotrophoblast apoptosis was induced by TNFalpha, and both anti-Fas antibody (CH11) and FasL-expressing T lymphocyte hybridoma (activated A1.1) cells induced HeLa cell apoptosis, neither CH11 antibody nor activated A1.1 cells stimulated apoptosis in term or first-trimester cytotrophoblasts or in term syncytiotrophoblasts. We conclude that Fas- but not TNFRp55-mediated apoptosis is blocked in primary villous trophoblasts. These data suggest that the Fas response is specifically inactivated by unknown mechanisms to avoid autocrine or paracrine killing by Fas ligand constitutively expressed on neighboring cyto- or syncytiotrophoblasts.  相似文献   

8.
Recombinant murine and human tumor necrosis factor (mTNF and hTNF, respectively) were radioiodinated to high specific activity using a solid-phase lactoperoxidase method. A single class of high affinity receptors for 125I-TNF was identified on TNF-sensitive murine L cells and human HeLa S2 cells. Competitive radioligand binding assays were used to study the species specificity of TNF preparations. Unlabeled hTNF competed 30-fold less effectively than mTNF for binding to L cell receptors, whereas mTNF competed to approximately the same extent as hTNF for binding to HeLa cell receptors. A similar species specificity was observed in cytotoxicity assays; hTNF was more cytotoxic for HeLa cells than mTNF. Conversely, mTNF was more growth inhibitory and cytotoxic for L cells than hTNF. mTNF. and hTNF.receptor complexes were compared by gel filtration chromatography and polyacrylamide gel electrophoresis before and after cross-linking with bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone (BSOCOES). These complexes eluted in gel filtration at a position corresponding to a globular protein of 350,000 Mr. Gel autoradiographs of the fractions containing cross-linked complexes showed bands of 95,000 and 75,000 Mr as well as small amounts of higher Mr bands. mTNF and hTNF treated with BSOCOES formed cross-linked dimers and trimers. Therefore, we were unable to determine whether the 95,000 and 75,000 Mr bands represented two distinct subunits of receptors or one subunit to which either a dimer or a monomer of TNF was cross-linked. These results demonstrate species specificity in the TNF-receptor interaction. In addition, the affinity labeling studies in two species give an identical pattern for the TNF X receptor complexes, suggesting that the receptors have similar subunit composition.  相似文献   

9.
Cell responses to soluble regulatory factors may be strongly influenced by the mode of presentation of the factor, as in matrix-bound versus diffusible modes. The possibly diverse effect of presenting a growth factor in autocrine as opposed to exogenous (or paracrine) mode is an especially important issue in cell biology. We demonstrate here that migration behavior of human mammary epithelial cells in response to stimulation by epidermal growth factor (EGF) is qualitatively different for EGF presented in exogenous (paracrine), autocrine, and intracrine modes. When EGF is added as an exogenous factor to the medium of cells that express EGF receptor (EGFR) but not EGF, cell migration speed increases while directional persistence decreases. When these EGFR-expressing cells are made to also express via retroviral transfection EGF in protease-cleaveable transmembrane form on the plasma membrane, migration speed similarly increases, but directional persistence increases as well. Addition of exogenous EGF to these cells abrogates their enhanced directional persistence, reducing their directionality to a level similar to wild-type cells. If the EGFR-expressing cells are instead transduced with a gene encoding EGF in a soluble form, migration speed and directional persistence were unaffected. Thus, autocrine presentation of EGF at the plasma membrane in a protease-cleavable form provides these cells with an enhanced ability to migrate persistently in a given direction, consistent with their increased capability for organizing into gland-like structures. In contrast, an exogenous/paracrine mode of EGF presentation generates a "scattering" response by the cells. These findings emphasize the functional importance of spatial restriction of EGFR signaling, and suggest critical implications for growth factor-based therapeutic treatments.  相似文献   

10.
11.
Interleukin 1 (IL-1) is a pleiotropic cytokine able to induce cytocidal effect. The aim of the presented work was to analyze the mechanism of IL-1-induced cytocidal effect in HeLa cells in the presence of cycloheximide (CHX). We found that the pattern of IL-1-induced cell death shares significant similarities with the effect of tumor necrosis factor (TNF) in these cells. Subsequently, we identified IL-1 cytotoxicity as an indirect effect. The supernatant collected from the cells treated with IL-1 and CHX showed toxic activity towards IL-1-resistant while TNF-sensitive A9 cells. Furthermore, antibodies neutralizing TNF blocked HeLa cell death induced by IL-1/CHX. TNF was then detected in HeLa cells by means of flow cytometry, fluorescence microscopy and ELISA of detergent-soluble cell extracts. In the presence of an inhibitor of TNF sheddase (TACE), the cytotoxic effect of IL-1/CHX and the amount of TNF protein in detergent-soluble cell extracts were enhanced. These results suggest that in response to interleukin 1/CHX, the amount of transmembrane TNF is increased. Taken together, we demonstrated that the mechanism of IL-1 cytotoxic activity in HeLa cells in the presence of CHX depends on the function of soluble and transmembrane TNF.  相似文献   

12.
13.
Dendritic cells are equipped with lectin receptors to sense the extracellular environment and modulate cellular responses. Human plasmacytoid dendritic cells (pDCs) uniquely express blood dendritic cell antigen 2 (BDCA2) protein, a C-type lectin lacking an identifiable signaling motif. We demonstrate here that BDCA2 forms a complex with the transmembrane adapter FcϵRIγ. Through pathway analysis, we identified a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of the B cell receptor (BCR), which is distinct from the system involved in T cell receptor (TCR) signaling. BDCA2 crosslinking resulted in the activation of the BCR-like cascade, which potently suppressed the ability of pDCs to produce type I interferon and other cytokines in response to Toll-like receptor ligands. Therefore, by associating with FcϵRIγ, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs.  相似文献   

14.
Dendritic cells are equipped with lectin receptors to sense the extracellular environment and modulate cellular responses. Human plasmacytoid dendritic cells (pDCs) uniquely express blood dendritic cell antigen 2 (BDCA2) protein, a C-type lectin lacking an identifiable signaling motif. We demonstrate here that BDCA2 forms a complex with the transmembrane adapter Fc epsilon RI gamma. Through pathway analysis, we identified a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of the B cell receptor (BCR), which is distinct from the system involved in T cell receptor (TCR) signaling. BDCA2 crosslinking resulted in the activation of the BCR-like cascade, which potently suppressed the ability of pDCs to produce type I interferon and other cytokines in response to Toll-like receptor ligands. Therefore, by associating with Fc epsilon RI gamma, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs.  相似文献   

15.
C M Chen  L R You  L H Hwang    Y H Lee 《Journal of virology》1997,71(12):9417-9426
Previous studies suggest that the core protein of hepatitis C virus (HCV) has a pleiotropic function in the replication cycle of the virus. To understand the role of this protein in HCV pathogenesis, we used a yeast two-hybrid protein interaction cloning system to search for cellular proteins physically interacting with the HCV core protein. One such cellular gene was isolated and characterized as the gene encoding the lymphotoxin-beta receptor (LT-betaR). In vitro binding analysis demonstrated that the HCV core protein binds to the C-terminal 98 amino acids within the intracellular domain of the LT-betaR that is involved in signal transduction, although the binding affinity of the full-length HCV core protein was weaker than that of its C-terminally truncated form. Our results also indicated that the N-terminal 40-amino-acid segment of the HCV core protein was sufficient for interaction with LT-betaR and that the core protein could form complexes with the oligomeric form of the intracellular domain of LT-betaR, which is a prerequisite for downstream signaling of this receptor. Similar to other members of the tumor necrosis factor (TNF) receptor superfamily, LT-betaR is involved in the cytotoxic effect of the signaling pathway, and thus we have elucidated the biological consequence of interaction between the HCV core protein and LT-betaR. Our results indicated that in the presence of the synergizing agent gamma interferon, the HCV core protein enhances the cytotoxic effects of recombinant forms of LT-betaR ligand in HeLa cells but not in hepatoma cells. Furthermore, this enhancement of the cytolytic activity was cytokine specific, since in the presence of cycloheximide, the expression of the HCV core protein did not elicit an increase in the cytolytic activity of TNF in both HeLa and hepatoma cells. In summary, the HCV core protein can associate with LT-betaR, and this protein-protein interaction has a modulatory effect on the signaling pathway of LT-betaR in certain cell types. Given the known roles of LT-betaR/LT-alpha1,beta2 receptor-ligand interactions in the normal development of peripheral lymphoid organs and in triggering cytolytic activity and NF-kappaB activation in certain cell types, our finding implies that the HCV core protein may aggravate these biological functions of LT-betaR, resulting in pathogenesis in HCV-infected cells.  相似文献   

16.
Endocytosis is an important mechanism to regulate tumor necrosis factor (TNF) signaling. In contrast to TNF receptor 1 (TNFR1; CD120a), the relevance of receptor internalization for signaling as well as the fate and route of internalized TNF receptor 2 (TNFR2; CD120b) is poorly understood. To analyze the dynamics of TNFR2 signaling and turnover at the plasma membrane we established a human TNFR2 expressing mouse embryonic fibroblast cell line in a TNFR1−/−/TNFR2−/− background. TNF stimulation resulted in a decrease of constitutive TNFR2 ectodomain shedding. We hypothesized that reduced ectodomain release is a result of TNF/TNFR2 complex internalization. Indeed, we could demonstrate that TNFR2 was internalized together with its ligand and cytoplasmic binding partners. Upon endocytosis the TNFR2 signaling complex colocalized with late endosome/lysosome marker Rab7 and entered the lysosomal degradation pathway. Furthermore, we identified a di-leucin motif in the cytoplasmic part of TNFR2 suggesting clathrin-dependent internalization of TNFR2. Internalization defective TNFR2 mutants are capable to signal, i.e. activate NFκB, demonstrating that the di-leucin motif dependent internalization is dispensable for this response. We therefore propose that receptor internalization primarily serves as a negative feed-back to limit TNF responses via TNFR2.  相似文献   

17.
The secretion of Wnt signaling proteins is dependent upon the transmembrane sorting receptor, Wntless (Wls), which recycles between the trans-Golgi network and the cell surface. Loss of Wls results in impairment of Wnt secretion and defects in development and homeostasis in Drosophila, Caenorhabditis elegans, and the mouse. The sorting signals for the internalization and trafficking of Wls have not been defined. Here, we demonstrate that Wls internalization requires clathrin and dynamin I, components of the clathrin-mediated endocytosis pathway. Moreover, we have identified a conserved YXXφ endocytosis motif in the third intracellular loop of the multipass membrane protein Wls. Mutation of the tyrosine-based motif YEGL to AEGL (Y425A) resulted in the accumulation of human mutant Wls on the cell surface of transfected HeLa cells. The cell surface accumulation of WlsAEGL was rescued by the insertion of a classical YXXφ motif in the cytoplasmic tail. Significantly, a Drosophila WlsAEGL mutant displayed a wing notch phenotype, with reduced Wnt secretion and signaling. These findings demonstrate that YXXφ endocytosis motifs can occur in the intracellular loops of multipass membrane proteins and, moreover, provide direct evidence that the trafficking of Wls is required for efficient secretion of Wnt signaling proteins.  相似文献   

18.
The transmembrane heterotrimer complex 10.4K/14.5K, also known as RID (for "receptor internalization and degradation"), is encoded by the adenovirus E3 region, and it down-regulates the cell surface expression of several unrelated receptors. We recently showed that RID expression correlates with down-regulation of the cell surface expression of the tumor necrosis factor (TNF) receptor 1 in several human cells. This observation provided the first mechanistic explanation for the inhibition of TNF alpha-induced chemokines by RID. Here we analyze the immunoregulatory activities of RID on lipopolysaccharide (LPS) and interleukin-1 beta (IL-1beta)-mediated responses. Although both signaling pathways are strongly inhibited by RID, the chemokines up-regulated by IL-1beta stimulation are only marginally inhibited. In addition, RID inhibits signaling induced by LPS without affecting the expression of the LPS receptor Toll-like receptor 4, demonstrating that RID need not target degradation of the receptor to alter signal transduction. Taken together, our data demonstrate the inhibitory effect of RID on two additional cell surface receptor-mediated signaling pathways involved in inflammatory processes. The data suggest that RID has intracellular targets that impair signal transduction and chemokine expression without evidence of receptor down-regulation.  相似文献   

19.
Dendritic cells are equipped with lectin receptors to sense the extracellular environment and modulate cellular responses. Human plasmacytoid dendritic cells (pDCs) uniquely express blood dendritic cell antigen 2 (BDCA2) protein, a C-type lectin lacking an identifiable signaling motif. We demonstrate here that BDCA2 forms a complex with the transmembrane adapter FcɛRIγ. Through pathway analysis, we identified a comprehensive signaling machinery in human pDCs, similar to that which operates downstream of the B cell receptor (BCR), which is distinct from the system involved in T cell receptor (TCR) signaling. BDCA2 crosslinking resulted in the activation of the BCR-like cascade, which potently suppressed the ability of pDCs to produce type I interferon and other cytokines in response to Toll-like receptor ligands. Therefore, by associating with FcɛRIγ, BDCA2 activates a novel BCR-like signaling pathway to regulate the immune functions of pDCs.  相似文献   

20.
Human endothelial cells and dermal fibroblasts both expressed a membrane-associated interleukin 1 (IL-1) activity when stimulated with either recombinant tumor necrosis factor (TNF) or recombinant lymphotoxin but stimulated endothelial cells expressed significantly more membrane IL-1 per cell than did fibroblasts. Lipopolysaccharide induced membrane IL-1 activity on endothelial cells but not fibroblasts. Interferon-gamma treatment of endothelial cells and fibroblasts had no direct effect on membrane IL-1 expression and little effect when used as a pretreatment for TNF or lipopolysaccharide stimulation. Endothelial cell membrane IL-1 activity was induced within 24 hr of culture with TNF or lipopolysaccharide, and increased up to 72 hr of incubation. Antibodies raised against human monocyte-derived IL-1 species neutralized the membrane IL-1 activity of TNF-stimulated endothelial cells. Both absorption studies and neutralization with specific sera indicated that endothelial cell membrane IL-1 is structurally related to IL-1 alpha. Endothelial cells expressed both IL-1 beta mRNA in response to TNF, lymphotoxin, and recombinant IL-1 species, as detected by Northern blot analysis. These studies demonstrate that endothelial cells can be activated to express a cell-surface IL-1 activity which is structurally, as well as functionally, related to the secreted form of IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号