首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The Arabidopsis DNA glycosylase/lyase ROS1 participates in active DNA demethylation by a base-excision pathway. ROS1 has been shown to be required for demethylating a transgene promoter. To determine the function of ROS1 in demethylating endogenous loci, we carried out bisulfite-sequencing analysis of several transposons and other genes in the ros1 mutant. In the wild-type, although CpG sites at the majority of these loci are heavily methylated, many of the CpXpG and CpXpX sites have low levels of methylation or are not at all methylated. However, these CpXpG and CpXpX sites become heavily methylated in the ros1 mutant. Associated with this increased DNA methylation, these loci show decreased expression in the ros1 mutant. Our results suggest that active DNA demethylation is important in pruning the methylation patterns of the genome, and even the normally "silent" transposons are under dynamic control by both methylation and demethylation. This dynamic control may be important in keeping the plant epigenome plastic so that it can efficiently respond to developmental and environmental cues.  相似文献   

3.
DNA methylation,a conserved epigenetic mark,is critical for tuning temporal and spatial gene expression.The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci.However,how ROS1 is recruited to specific loci is not well understood.Here,we report the discovery of Arabidopsis AGENET Domain Containing Protein 3(AGDP3) as a cellular factor that is required to prevent g...  相似文献   

4.
5.
6.
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression. The 5‐methylcytosine DNA glycosylase/lyase ROS1 initiates a base‐excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1 000s of genomic regions in Arabidopsis. How ROS1 is regulated and targeted to specific genomic regions is not well understood. Here, we report the discovery of an Arabidopsis protein complex that contains ROS1, regulates ROS1 gene expression, and likely targets the ROS1 protein to specific genomic regions. ROS1 physically interacts with a WD40 domain protein (RWD40), which in turn interacts with a methyl‐DNA binding protein (RMB1) as well as with a zinc finger and homeobox domain protein (RHD1). RMB1 binds to DNA that is methylated in any sequence context, and this binding is necessary for its function in vivo. Loss‐of‐function mutations in RWD40, RMB1, or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1. Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter, plants mutated in RWD40, RMB1, or RHD1 show increased ROS1 expression. Importantly, ROS1 binding to the ROS1 promoter requires RWD40, RMB1, and RHD1, suggesting that this complex dictates ROS1 targeting to this locus. Our results demonstrate that ROS1 forms a protein complex with RWD40, RMB1, and RHD1, and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis.  相似文献   

7.
Regulation and function of DNA methylation in plants and animals   总被引:2,自引:0,他引:2  
He XJ  Chen T  Zhu JK 《Cell research》2011,21(3):442-465
  相似文献   

8.
9.
DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases.  相似文献   

10.
DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation.  相似文献   

11.
12.
DNA methylation patterns are the dynamic outcome of antagonist methylation and demethylation mechanisms, but the latter are still poorly understood. Active DNA demethylation in plants is mediated by a family of DNA glycosylases typified by Arabidopsis ROS1 (repressor of silencing 1). ROS1 and its homologs remove 5-methylcytosine and incise the sugar backbone at the abasic site, thus initiating a base excision repair pathway that finally inserts an unmethylated cytosine. The DNA 3′-phosphatase ZDP processes some of the incision products generated by ROS1, allowing subsequent DNA polymerization and ligation steps. In this work, we examined the possible role of plant XRCC1 (x-ray cross-complementing group protein 1) in DNA demethylation. We found that XRCC1 interacts in vitro with ROS1 and ZDP and stimulates the enzymatic activity of both proteins. Furthermore, extracts from xrcc1 mutant plants exhibit a reduced capacity to complete DNA demethylation initiated by ROS1. An anti-XRCC1 antibody inhibits removal of the blocking 3′-phosphate in the single-nucleotide gap generated during demethylation and reduces the capacity of Arabidopsis cell extracts to ligate a nicked DNA intermediate. Our results suggest that XRCC1 is a component of plant base excision repair and functions at several stages during active DNA demethylation in Arabidopsis.  相似文献   

13.
DNA甲基化(DNA methylation)及去甲基化属于常见的表观遗传修饰,可介导多种生理和病理过程。DNA甲基化及去甲基化修饰参与基因的表达调控,且二者的动态平衡可以维持遗传表达稳定性。DNA甲基转移酶(DNA methyltransferase,DNMT)主要包括DNMT1、DNMT3A、DNMT3B、DNMT3L,DNA去甲基化酶(DNA demethylase)主要指10-11易位蛋白(ten-eleven-translocation protein,TET)家族,包括TET1、TET2、TET3,是调节DNA甲基化和去甲基化的重要酶类。TET酶是目前发现的调节DNA去甲基化(DNA demethylation)过程中最重要的酶。综述了TET酶在DNA去甲基化修饰中的作用机制,探讨了DNA去甲基化酶在生长发育和疾病中的关键作用,以期为今后表观遗传学的相关研究提供新思路。  相似文献   

14.
Arabidopsis thaliana repressor of silencing 1 (ROS1) is a multi-domain bifunctional DNA glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC and 5hmC) when paired with a guanine, leaving an apyrimidinic (AP) site that is subsequently incised by the lyase activity. ROS1 is slow in base excision and fast in AP lyase activity, indicating that the recognition of pyrimidine modifications might be a rate-limiting step. In the C-terminal half, the enzyme harbors a helix–hairpin–helix DNA glycosylase domain followed by a unique C-terminal domain. We show that the isolated glycosylase domain is inactive for base excision but retains partial AP lyase activity. Addition of the C-terminal domain restores the base excision activity and increases the AP lyase activity as well. Furthermore, the two domains remain tightly associated and can be co-purified by chromatography. We suggest that the C-terminal domain of ROS1 is indispensable for the 5mC DNA glycosylase activity of ROS1.  相似文献   

15.
Genes that promote DNA methylation and demethylation in plants have been characterized mainly in Arabidopsis. Arabidopsis DNA demethylation is mediated by bi-functional DNA enzymes with glycosylase activity that removes 5-methylcytosine and lyase activity that nicks double-stranded DNA at an abasic site. Homologous recombination-promoted knock-in targeting of the ROS1a gene, the longest of six putative DNA demethylase genes in the rice genome, by fusing its endogenous promoter to the GUS reporter gene, led to reproducibly disrupted ROS1a in primary (T(0)) transgenic plants in the heterozygous condition. These T(0) plants exhibited no overt morphological phenotypes during the vegetative phase, and GUS staining showed ROS1a expression in pollen, unfertilized ovules and meristematic cells. Interestingly, neither the maternal nor paternal knock-in null allele, ros1a-GUS1, was virtually detected in the progeny; such an intransmittable null mutation is difficult to isolate by conventional mutagenesis techniques that are usually used to identify and isolate mutants in the progeny population. Even in the presence of the wild-type paternal ROS1a allele, the maternal ros1a-GUS1 allele caused failure of early-stage endosperm development, resulting in incomplete embryo development, with embryogenesis producing irregular but viable embryos that failed to complete seed dormancy, implying non-equivalent maternal and paternal contribution of ROS1a in endosperm development. The paternal ros1a-GUS1 allele was not transmitted to progeny, presumably because of a male gametophytic defect(s) prior to fertilization. Thus, ROS1a is indispensable in both male and female gametophytes, and DNA demethylation must plays important roles in both gametophytes.  相似文献   

16.
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re‐established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage‐binding protein 2 (DDB2) and the ROS1‐mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3′‐phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1‐mediated active DNA demethylation.  相似文献   

17.
18.
19.
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/−zdp−/− mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号