首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
MOTIVATION: Accurate multiple sequence alignments are essential in protein structure modeling, functional prediction and efficient planning of experiments. Although the alignment problem has attracted considerable attention, preparation of high-quality alignments for distantly related sequences remains a difficult task. RESULTS: We developed PROMALS, a multiple alignment method that shows promising results for protein homologs with sequence identity below 10%, aligning close to half of the amino acid residues correctly on average. This is about three times more accurate than traditional pairwise sequence alignment methods. PROMALS algorithm derives its strength from several sources: (i) sequence database searches to retrieve additional homologs; (ii) accurate secondary structure prediction; (iii) a hidden Markov model that uses a novel combined scoring of amino acids and secondary structures; (iv) probabilistic consistency-based scoring applied to progressive alignment of profiles. Compared to the best alignment methods that do not use secondary structure prediction and database searches (e.g. MUMMALS, ProbCons and MAFFT), PROMALS is up to 30% more accurate, with improvement being most prominent for highly divergent homologs. Compared to SPEM and HHalign, which also employ database searches and secondary structure prediction, PROMALS shows an accuracy improvement of several percent. AVAILABILITY: The PROMALS web server is available at: http://prodata.swmed.edu/promals/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
T-Coffee (Tree-based consistency objective function for alignment evaluation) is a versatile multiple sequence alignment (MSA) method suitable for aligning most types of biological sequences. The main strength of T-Coffee is its ability to combine third party aligners and to integrate structural (or homology) information when building MSAs. The series of protocols presented here show how the package can be used to multiply align proteins, RNA and DNA sequences. The protein section shows how users can select the most suitable T-Coffee mode for their data set. Detailed protocols include T-Coffee, the default mode, M-Coffee, a meta version able to combine several third party aligners into one, PSI (position-specific iterated)-Coffee, the homology extended mode suitable for remote homologs and Expresso, the structure-based multiple aligner. We then also show how the T-RMSD (tree based on root mean square deviation) option can be used to produce a functionally informative structure-based clustering. RNA alignment procedures are described for using R-Coffee, a mode able to use predicted RNA secondary structures when aligning RNA sequences. DNA alignments are illustrated with Pro-Coffee, a multiple aligner specific of promoter regions. We also present some of the many reformatting utilities bundled with T-Coffee. The package is an open-source freeware available from http://www.tcoffee.org/.  相似文献   

3.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

4.
Structural alignments often reveal relationships between proteins that cannot be detected using sequence alignment alone. However, profile search methods based entirely on structural alignments alone have not been found to be effective in finding remote homologs. Here, we explore the role of structural information in remote homolog detection and sequence alignment. To this end, we develop a series of hybrid multidimensional alignment profiles that combine sequence, secondary and tertiary structure information into hybrid profiles. Sequence-based profiles are profiles whose position-specific scoring matrix is derived from sequence alignment alone; structure-based profiles are those derived from multiple structure alignments. We compare pure sequence-based profiles to pure structure-based profiles, as well as to hybrid profiles that use combined sequence-and-structure-based profiles, where sequence-based profiles are used in loop/motif regions and structural information is used in core structural regions. All of the hybrid methods offer significant improvement over simple profile-to-profile alignment. We demonstrate that both sequence-based and structure-based profiles contribute to remote homology detection and alignment accuracy, and that each contains some unique information. We discuss the implications of these results for further improvements in amino acid sequence and structural analysis.  相似文献   

5.
We utilize the secondary structural properties of the 28S rRNA D2–D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450–477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.Access to on-line data: http://hymenoptera.tamu.edu/rna; username, ichs; password, ichzzz  相似文献   

6.
The database PALI (Phylogeny and ALIgnment of homologous protein structures) consists of families of protein domains of known three-dimensional (3D) structure. In a PALI family, every member has been structurally aligned with every other member (pairwise) and also simultaneous superposition (multiple) of all the members has been performed. The database also contains 3D structure-based and structure-dependent sequence similarity-based phylogenetic dendrograms for all the families. The PALI release used in the present analysis comprises 225 families derived largely from the HOMSTRAD and SCOP databases. The quality of the multiple rigid-body structural alignments in PALI was compared with that obtained from COMPARER, which encodes a procedure based on properties and relationships. The alignments from the two procedures agreed very well and variations are seen only in the low sequence similarity cases often in the loop regions. A validation of Direct Pairwise Alignment (DPA) between two proteins is provided by comparing it with Pairwise alignment extracted from Multiple Alignment of all the members in the family (PMA). In general, DPA and PMA are found to vary rarely. The ready availability of pairwise alignments allows the analysis of variations in structural distances as a function of sequence similarities and number of topologically equivalent Calpha atoms. The structural distance metric used in the analysis combines root mean square deviation (r.m.s.d.) and number of equivalences, and is shown to vary similarly to r.m.s.d. The correlation between sequence similarity and structural similarity is poor in pairs with low sequence similarities. A comparison of sequence and 3D structure-based phylogenies for all the families suggests that only a few families have a radical difference in the two kinds of dendrograms. The difference could occur when the sequence similarity among the homologues is low or when the structures are subjected to evolutionary pressure for the retention of function. The PALI database is expected to be useful in furthering our understanding of the relationship between sequences and structures of homologous proteins and their evolution.  相似文献   

7.
We have developed MUMMALS, a program to construct multiple protein sequence alignment using probabilistic consistency. MUMMALS improves alignment quality by using pairwise alignment hidden Markov models (HMMs) with multiple match states that describe local structural information without exploiting explicit structure predictions. Parameters for such models have been estimated from a large library of structure-based alignments. We show that (i) on remote homologs, MUMMALS achieves statistically best accuracy among several leading aligners, such as ProbCons, MAFFT and MUSCLE, albeit the average improvement is small, in the order of several percent; (ii) a large collection (>10000) of automatically computed pairwise structure alignments of divergent protein domains is superior to smaller but carefully curated datasets for estimation of alignment parameters and performance tests; (iii) reference-independent evaluation of alignment quality using sequence alignment-dependent structure superpositions correlates well with reference-dependent evaluation that compares sequence-based alignments to structure-based reference alignments.  相似文献   

8.
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.  相似文献   

9.
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.  相似文献   

10.
The information required to generate a protein structure is contained in its amino acid sequence, but how three-dimensional information is mapped onto a linear sequence is still incompletely understood. Multiple structure alignments of similar protein structures have been used to investigate conserved sequence features but contradictory results have been obtained, due, in large part, to the absence of subjective criteria to be used in the construction of sequence profiles and in the quantitative comparison of alignment results. Here, we report a new procedure for multiple structure alignment and use it to construct structure-based sequence profiles for similar proteins. The definition of "similar" is based on the structural alignment procedure and on the protein structural distance (PSD) described in paper I of this series, which offers an objective measure for protein structure relationships. Our approach is tested in two well-studied groups of proteins; serine proteases and Ig-like proteins. It is demonstrated that the quality of a sequence profile generated by a multiple structure alignment is quite sensitive to the PSD used as a threshold for the inclusion of proteins in the alignment. Specifically, if the proteins included in the aligned set are too distant in structure from one another, there will be a dilution of information and patterns that are relevant to a subset of the proteins are likely to be lost.In order to understand better how the same three-dimensional information can be encoded in seemingly unrelated sequences, structure-based sequence profiles are constructed for subsets of proteins belonging to nine superfolds. We identify patterns of relatively conserved residues in each subset of proteins. It is demonstrated that the most conserved residues are generally located in the regions where tertiary interactions occur and that are relatively conserved in structure. Nevertheless, the conservation patterns are relatively weak in all cases studied, indicating that structure-determining factors that do not require a particular sequential arrangement of amino acids, such as secondary structure propensities and hydrophobic interactions, are important in encoding protein fold information. In general, we find that similar structures can fold without having a set of highly conserved residue clusters or a well-conserved sequence profile; indeed, in some cases there is no apparent conservation pattern common to structures with the same fold. Thus, when a group of proteins exhibits a common and well-defined sequence pattern, it is more likely that these sequences have a close evolutionary relationship rather than the similarities having arisen from the structural requirements of a given fold.  相似文献   

11.
ViTO: tool for refinement of protein sequence-structure alignments   总被引:2,自引:0,他引:2  
SUMMARY: ViTO is a graphical application, including an editor, of multiple sequence alignment and a three-dimensional (3D) structure viewer. It is possible to manipulate alignments containing hundreds of sequences and to display a dozen structures. ViTO can handle so-called 'multiparts' alignments to allow the visualization of complex structures (multi-chain proteins and/or small molecules and DNA) and the editing of the corresponding alignment. The 3D viewer and the alignment editor are connected together allowing rapid refinement of sequence-structure alignment by taking advantage of the immediate visualization of resulting insertions/deletions and strict conservations in their structural context. More generally, it allows the mapping of informations about the sequence conservation extracted from the alignment onto the 3D structures in a dynamic way. ViTO is also connected to two comparative modelling programs, SCWRL and MODELLER. These features make ViTO a powerful tool to characterize protein families and to optimize the alignments for comparative modelling. AVAILABILITY: http://bioserv.cbs.cnrs.fr/VITO/DOC/. SUPPLEMENTARY INFORMATION: http://bioserv.cbs.cnrs.fr/VITO/DOC/index.html.  相似文献   

12.
Alignment of RNA base pairing probability matrices   总被引:6,自引:0,他引:6  
MOTIVATION: Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are an indispensable necessity in RNA bioinformatics. RESULTS: We present here a method to compute pairwise and progressive multiple alignments from the direct comparison of base pairing probability matrices. Instead of attempting to solve the folding and the alignment problem simultaneously as in the classical Sankoff's algorithm, we use McCaskill's approach to compute base pairing probability matrices which effectively incorporate the information on the energetics of each sequences. A novel, simplified variant of Sankoff's algorithms can then be employed to extract the maximum-weight common secondary structure and an associated alignment. AVAILABILITY: The programs pmcomp and pmmulti described in this contribution are implemented in Perl and can be downloaded together with the example datasets from http://www.tbi.univie.ac.at/RNA/PMcomp/. A web server is available at http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl  相似文献   

13.
Most bioinformatics analyses require the assembly of a multiple sequence alignment. It has long been suspected that structural information can help to improve the quality of these alignments, yet the effect of combining sequences and structures has not been evaluated systematically. We developed 3DCoffee, a novel method for combining protein sequences and structures in order to generate high-quality multiple sequence alignments. 3DCoffee is based on TCoffee version 2.00, and uses a mixture of pairwise sequence alignments and pairwise structure comparison methods to generate multiple sequence alignments. We benchmarked 3DCoffee using a subset of HOMSTRAD, the collection of reference structural alignments. We found that combining TCoffee with the threading program Fugue makes it possible to improve the accuracy of our HOMSTRAD dataset by four percentage points when using one structure only per dataset. Using two structures yields an improvement of ten percentage points. The measures carried out on HOM39, a HOMSTRAD subset composed of distantly related sequences, show a linear correlation between multiple sequence alignment accuracy and the ratio of number of provided structure to total number of sequences. Our results suggest that in the case of distantly related sequences, a single structure may not be enough for computing an accurate multiple sequence alignment.  相似文献   

14.
An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian‐weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD's robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, secondary‐structure matching, combinatorial extension, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics‐scale analysis. HwRMSD can align homologs with low‐sequence identity and large conformational differences, cases where both sequence‐based and structural‐based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence‐alignment method, substitution matrix, and gap parameters for each unique pair of homologs. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Three-dimensional cluster analysis offers a method for the prediction of functional residue clusters in proteins. This method requires a representative structure and a multiple sequence alignment as input data. Individual residues are represented in terms of regional alignments that reflect both their structural environment and their evolutionary variation, as defined by the alignment of homologous sequences. From the overall (global) and the residue-specific (regional) alignments, we calculate the global and regional similarity matrices, containing scores for all pairwise sequence comparisons in the respective alignments. Comparing the matrices yields two scores for each residue. The regional conservation score (C(R)(x)) defines the conservation of each residue x and its neighbors in 3D space relative to the protein as a whole. The similarity deviation score (S(x)) detects residue clusters with sequence similarities that deviate from the similarities suggested by the full-length sequences. We evaluated 3D cluster analysis on a set of 35 families of proteins with available cocrystal structures, showing small ligand interfaces, nucleic acid interfaces and two types of protein-protein interfaces (transient and stable). We present two examples in detail: fructose-1,6-bisphosphate aldolase and the mitogen-activated protein kinase ERK2. We found that the regional conservation score (C(R)(x)) identifies functional residue clusters better than a scoring scheme that does not take 3D information into account. C(R)(x) is particularly useful for the prediction of poorly conserved, transient protein-protein interfaces. Many of the proteins studied contained residue clusters with elevated similarity deviation scores. These residue clusters correlate with specificity-conferring regions: 3D cluster analysis therefore represents an easily applied method for the prediction of functionally relevant spatial clusters of residues in proteins.  相似文献   

16.
17.
PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super-position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 'orphans' (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The database with the web interfaced search and dendrogram generation tools can be accessed at http://pauling.mbu.iisc.ernet. in/ approximately pali.  相似文献   

18.
A method for simultaneous alignment of multiple protein structures   总被引:1,自引:0,他引:1  
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2004,56(1):143-156
Here, we present MultiProt, a fully automated highly efficient technique to detect multiple structural alignments of protein structures. MultiProt finds the common geometrical cores between input molecules. To date, most methods for multiple alignment start from the pairwise alignment solutions. This may lead to a small overall alignment. In contrast, our method derives multiple alignments from simultaneous superpositions of input molecules. Further, our method does not require that all input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules in the input. To demonstrate the power of MultiProt, we provide a number of case studies. First, we demonstrate known multiple alignments of protein structures to illustrate the performance of MultiProt. Next, we present various biological applications. These include: (1) a partial alignment of hinge-bent domains; (2) identification of functional groups of G-proteins; (3) analysis of binding sites; and (4) protein-protein interface alignment. Some applications preserve the sequence order of the residues in the alignment, whereas others are order-independent. It is their residue sequence order-independence that allows application of MultiProt to derive multiple alignments of binding sites and of protein-protein interfaces, making MultiProt an extremely useful structural tool.  相似文献   

19.
MOTIVATION: An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. RESULTS: We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. AVAILABILITY: Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID  相似文献   

20.
Multiple alignment of protein sequences with repeats and rearrangements   总被引:3,自引:0,他引:3  
Multiple sequence alignments are the usual starting point for analyses of protein structure and evolution. For proteins with repeated, shuffled and missing domains, however, traditional multiple sequence alignment algorithms fail to provide an accurate view of homology between related proteins, because they either assume that the input sequences are globally alignable or require locally alignable regions to appear in the same order in all sequences. In this paper, we present ProDA, a novel system for automated detection and alignment of homologous regions in collections of proteins with arbitrary domain architectures. Given an input set of unaligned sequences, ProDA identifies all homologous regions appearing in one or more sequences, and returns a collection of local multiple alignments for these regions. On a subset of the BAliBASE benchmarking suite containing curated alignments of proteins with complicated domain architectures, ProDA performs well in detecting conserved domain boundaries and clustering domain segments, achieving the highest accuracy to date for this task. We conclude that ProDA is a practical tool for automated alignment of protein sequences with repeats and rearrangements in their domain architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号