首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect was examined of the chemical decomposition of the potassium stain sodium hexanitrocobaltate (III) (SHC), on its ability to produce stain granules of consistent size that could be used to estimate the K+ contents of stomatal guard cells. Stomata in detached epidermis from leaves of Vicia faba (fava bean) were stimulated to accumulate K+ by treating them with fusicoccin. Stomatal apertures and the fraction of guard cell area covered by K+ precipitate granules (K+ score) were measured by digitizing photographic enlargements, and K+ scores were correlated with the age of stain that had been stored either in open or closed containers. The ability of stain aged in open containers to produce consistent fractional cell coverage was compared to 1) the ability of identically treated stain to precipitate K+ from solutions of KCI, and to 2) the kinetics of decomposition of SHC. It was found that the fractional coverage of guard cells of stomata opened to the same apertures decreased with a first order rate constant of 2.3 x 10(-5)/sec. The mass of precipitate formed by treatment of KCl solutions was unchanged for 2 hr after initial preparation of the SHC, and decreased thereafter with a first order rate constant of 1.0 x 10(-5)/sec. When stored in tightly sealed containers, nearly 100 hr were required for an occasionally opened bottle of SHC to decay to the same efficacy as a solution left open to the air for 8 hr.  相似文献   

2.
前人研究表明,保卫细胞微管系统在气孔运动中起到重要作用:保卫细胞质膜上内向K+通道的正常活性有赖于微管的正常解聚/聚合的动态变化,微管系统可能通过调节保卫细胞K+通道而控制气孔运动,即微管解聚导致内向K+通道关闭,保卫细胞无法因膨压调节吸收水分而抑制气孔开放。有学者认为,喜树碱或其类似物能够与微管蛋白结合,并降低微管结构稳定性,其机制则可能是抑制细胞高分子量微管结合蛋白对微管组装的辅助作用,但这方面的实验证据相对匮乏。因此,为了进一步研究喜树碱的生态生物化学功能,我们采取叶面喷施喜树碱和PEG模拟干旱诱导气孔关闭的方法,研究了外源喜树碱对喜树幼苗气孔导度的影响,同时以没有内源喜树碱的烟草为实验材料进行了对照研究。研究结果表明:0.0115mmol·L-1的喜树碱水饱和溶液对喜树和烟草幼苗叶片气孔导度的影响规律一致,均表现出明显的抑制气孔开放的效果,这为喜树碱与微管蛋白结合提供了部分证据。  相似文献   

3.
Isolated rat hepatocytes posses a saturable glucocorticoid uptake system with high affinity (Kd value = 2.8 ± 0.7 × 10−8 M; 318,000 ± 80,000 binding sites per cell; 317 fmol/mg protein). The initial rates of uptake decrease by about 30–40% if the cells are incubated simultaneously with [3H]corticosterone and either SH-reagents (N-ethylmaleimide and p-chloromercuriphenylsulphonate, 1 mM), metabolic inhibitors (2,4-dinitrophenol, 1 mM; and antimycin, 0.1 mM) or the Na+/K+-ATPase-inhibitors, ouabain and quercetine. These Na+/K+-ATPase-blockers exert half-maximal inhibition at 3 × 10−7 and 3 × 10−6 M, respectively. A slight increase in K+ concentration and a corresponding decrease in Na+ in the medium leads to a significant reduction in the initial uptake rate. The uptake system from the rat hepatocytes shows a clear steroid specificity, being different from the intracellular receptor. Corticosterone and progesterone are the strongest competitors, cortisol, 5- and 5β-dihydrocorticosterone, 11-deoxycorticosterone, cortisone and testosterone have an intermediate effect and only weak competition is exerted by dexamethasone and by the mineralocorticoid, aldosterone. Estradiol and estrone sulphate as well as the synthetic glucocorticoid triamcinolone acetonide are unable to inhibit initial corticosterone uptake.  相似文献   

4.
Neutrophils die rapidly via apoptosis and their survival is contingent upon rescue from constitutive programmed cell death by signals from the microenvironment. In these experiments, we investigated whether prevention of K+ efflux could affect the apoptotic machinery in human neutrophils. Disruption of the natural K+ electrochemical gradient suppressed neutrophil apoptosis (assessed by annexin V binding, nuclear DNA content and nucleosomal DNA fragmentation) and prolonged cell survival within 24–48 h of culture. High extracellular K+ (10–100 mM) did not activate extracellular signal-regulated kinase (ERK) and Akt, nor affected phosphorylation of p38 MAPK associated with constitutive apoptosis. Consistently, pharmacological blockade of ERK kinase or phosphatidylinositol 3-kinase (PI 3-kinase) did not affect the anti-apoptotic action of KCl. Inhibition of K+ efflux effectively reduced, though never completely inhibited, decreases in mitochondrial transmembrane potential (ΔΨm) that preceded development of apoptotic morphology. Changes in ΔΨm resulted in attenuation of cytochrome c release from mitochondria into the cytosol and decreases in caspase-3 activity. Culture of neutrophils in medium containing 80 mM KCl with the pan-caspase inhibitor Z-VAD-FMK resulted in slightly greater suppression of apoptosis than KCl alone. High extracellular KCl also attenuated translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) from mitochondria to nuclei. The DNase inhibitor, aurintricarboxylic acid (ATA) partially inhibited nucleosomal DNA fragmentation, and the effects of ATA and 80 mM KCl were not additive. These results show that prevention of K+ efflux promotes neutrophil survival by suppressing apoptosis through preventing mitochondrial dysfunction and release of the pro-apoptotic proteins cytochrome c, AIF and EndoG independent of ERK, PI 3-kinase and p38 MAPK. Thus, K+ released locally from damaged cells may function as a survival signal for neutrophils.  相似文献   

5.
Enzymatic acylation of rutin and esculin with aromatic, aliphatic and aryl-aliphatic acids using Candida antarctica lipase in tert amyl alcohol as solvent was investigated under low water content. Whatever the acyl donor used, the conversion yields and initial rates for esculin were higher than for rutin. For a given flavonoid, the performance of these reactions depended on the acyl donor structures. For aliphatic acids, conversion yields and initial rates of both flavonoids were respectively in the ranges of 68-90% and of 9.5×10-2-72×10-2 mmol l-1 h-1. For aromatic acids, the reaction occurred only with the aryl subgroup (cinnamic, hydrocinnamic, 3,4-dihydroxyhydrocinnamic and 4-hydroxyphenyl acetic acids) and was drastically influenced by the presence of side chain and substitution patterns of the aromatic ring. Except for hydrocinnamic acid (75%, 23.4×10-2 mmol l-1 h-1), with these acids the conversion yields and initial rates were lower and in the range of 10-45% and of 0.7×10-2 to 12.1×10-2 mmol l-1 h-1. Unsaturation of the side chain of the hydrocinnamic acid decreased the esculin conversion rate from 75 to 13% and initial rate from 23.4 to 1.76×10-2 mmol l-1 h-1. The presence of hydroxyl or nitro-groups on the aromatic ring of the aryl aliphatic acid also reduced conversion yields and initial rates. Even without a spacer, the non-phenolic ring acid (quinic acid) was reactive and lead to conversion yields of about 20 and 23% respectively for rutin and esculin.  相似文献   

6.
气孔是植物响应外源信号,与环境进行水分和气体交换的门户。由外源信号引起的保卫细胞微丝骨架动态变化在气孔运动中发挥重要作用,但是具体的精确调节机制仍不清楚。微丝结合蛋白家族(ABPs) 是微丝动态组装最直接的调控者,它们的作用不容忽视。本文运用反向遗传学,以微丝结合蛋白—加帽蛋白 (CP) β-亚基 (CPB) 突变体cpb-3为实验材料,探究其在壳梭孢素 (FC)诱导气孔开放中的作用。结果发现:离体叶片干燥3 h,cpb-3突变体的叶片失水率为63.45%,明显高于野生型的48.99%。气孔开度测量及激光共聚焦显微镜观察发现,cpb-3突变体的气孔开放程度以及微丝动态重排对FC分子更敏感。气孔开度相比野生型增大了20% (P<0.05),含辐射状微丝排布的保卫细胞数量比例增幅达到58.3%,比对照组高出18.5%。此外,非损伤微测技术记录保卫细胞Ca2+、K+等跨膜运输动态,FC处理下,cpb-3突变体保卫细胞中Ca2+外流速度升至212.86 pmol cm-2s-1,野生型仅为68.76 pmol cm-2s-1,明显快于野生型。且K+内流也有相同表现。综上表明,微丝加帽蛋白CP的β亚基CPB可能通过调节保卫细胞微丝骨架动态重排以及离子流动,在FC诱导的气孔运动中发挥重要的作用。  相似文献   

7.
The free radical (II) produced by one-electron reduction of adriamycin (I) exists in aqueous solution at pH 7.0 in equilibrium with the parent and the two-electron reduced form (III). Over some hundreds of milliseconds deglycosylation takes place yielding an aglycone (IV) which subsequently rearranges to form a more stable aglycone. 7-deoxyadriamycinone (V). The changes in the optical absorption spectrum accompanying these processes are reported. The rate constant for III + IV is 1.1 s-1 and for IV + V is 1.5 × 10--2 s.-1. At pH 4.0 the two electron reduced form of adriamycin exists predominantly in a different tautomeric form (VII). It is suggested that this deglycosylates via a free radical mechanism involving the acidic form of the semiquinone free radical (VI)  相似文献   

8.
The anti-tumour drug cisplatin is a potent nephrotoxic agent. Renal Na+/K+-activated and Mg2+-activated ATPases are shown to be equally sensitive to cisplatin inhibition in vitro. An aged solution of cisplatin, containing hydrolysis products, is a thousand times more inhibitory to ATPase (ID50 8.0 × 10−7 M) than freshly made cisplatin solutions (ID50 6.5 × 10−4 M). Chloride ion concentrations of 0–150 mM in the assay mixtures do not affect either the extent of inhibition of ATPase by cisplatin or the time required for inhibition to develop. We conclude that cisplatin reacts directly with ATPase rather than that a hydrolysis product is responsible for the inhibition. Various amino acid complexes with cisplatin were tested for their ability to inhibit ATPase. Cysteine/cisplatin in a mole ratio of 1:1 is completely ineffective. Mono-substituted methionine/cisplatin is more inhibitory than cisplatin alone but di-substituted methionine/cisplatin is less effective. The reason for these observations and their significance to nephrotoxicity are discussed.  相似文献   

9.
Voltage-dependent K+ channels are responsible for repolarization of the cell membrane during the late phase of the action potential. Here we report the purification of proteins from squid axon membranes which bind the K+-channel blocker noxiustoxin (NTX), and their subsequent functional reconstitution in planar bilayers. The NXT-affinity purified proteins had Mr values of 60000 ± 6000, 160000 ± 15000 and 220000 ± 20000. Their incorporation into bilayers resulted in single-channel currents with three conductances, the most frequent one of 11 pS in 300/100 mM KCl (cis/trans). The voltage dependence, reversal potential and bursting behavior suggest that these are the K+ channels involved in the squid axon action potential.  相似文献   

10.
Glial fibrillary acidic protein (GFAP), which was purified from acetone powder of the bovine spinal cord, was reassembled in 0.1 M imidazole HCl buffer containing metallic cations, Ca2+, Mg2+, Na+ or K+ at physiological or more acidic pH. An electron microscopy revealed reassembled glial filaments at pH 6.8 without any cations but amorphous aggregates at pH 6.3 which were readily observed as a white precipitate by the naked eye. Under more alkaline pH (pH 7.4) only rod-shaped short filaments were formed. In the presence of mM concentrations of Ca2+ or Mg2+, thick bundles of glial filaments, detectable by light microscopy, were formed at acidic pH. At pH 7.4 long reassembled filaments could be formed in the buffer containing divalent cations. Na+ (0.1 M) made filament-like structures of GFAP but they are rather random compared to the filaments promoted by the divalent cations. K+ made only amorphous aggregation of the short filaments. These findings indicate that the reassembly of GFAP at physiological pH requires essentially divalent cations but not ionic strength.  相似文献   

11.
The effects of K+ channel modulators, tetraethylammonium, 4-aminopyridine and diazoxide, and high extracellular K+ on cell growth and agonist-induced intracellular Ca2+ mobilization were investigated. Two human brain tumour cell lines, U-373 MG astrocytoma and SK-N-MC neuroblastoma, were used as model cellular systems. K+ channel modulators and increased extracellular K+ concentration inhibited tumour cell growth in a dose-related fashion in both cell lines. In addition, agonist (carbachol or serum)-induced intracellular Ca2+ mobilization was also blocked by the pretreatment of growth-inhibitory concentrations of K+ channel modulators and high extracellular K+. Thus, these results suggest that K+ channel modulators are effective inhibitors of brain tumour cell growth and that their growth regulation may be due to the interference with the intracellular Ca2+ signalling mechanisms.  相似文献   

12.
Euryhaline crustaceans tolerate exposure to a wide range of dilute media, using compensatory, ion regulatory mechanisms. However, data on molecular interactions occurring at cationic sites on the crustacean gill (Na+,K+)-ATPase, a key enzyme in this hyperosmoregulatory process, are unavailable. We report that Na+ binding at the activating site leads to cooperative, heterotropic interactions that are insensitive to K+. The binding of K+ ions to their high affinity sites displaces Na+ ions from their sites. The increase in Na+ ion concentrations increases heterotropic interactions with the K+ ions, with no changes in K0.5 for K+ ion activation at the extracellular sites. Differently from mammalian (Na+,K+)-ATPases, that from C. danae exhibits additional NH4+ ion binding sites that synergistically activate the enzyme at saturating concentrations of Na+ and K+ ions. NH4+ binding is cooperative, and heterotropic NH4+ ion interactions are insensitive to Na+ ions, but Na+ ions displace NH4+ ions from their sites. NH4+ ions also displace Na+ ions from their sites. Mg2+ ions modulate enzyme stimulation by NH4+ ions, displacing NH4+ ion from its sites. These interactions may modulate NH4+ ion excretion and Na+ ion uptake by the gill epithelium in euryhaline crustaceans that confront hyposmotic media.  相似文献   

13.
Potassium ion uptake by swelling Commelina communis guard cell protoplasts   总被引:1,自引:0,他引:1  
Commelina communis L. guard cell protoplasts were induced to swell under low CO2 conditions in the light while incubated in media containing KCl. Precise measurements of changes in the volume of the protoplasts were made including estimates of protoplast non-osmotic volume by Boyle-van't Hoff analysis. The amount of K+ which accumulated during the treatment was measured. The observed changes in osmotic volume could be accounted for by the uptake of K+ which appeared to be balanced by an anion or anions with an effective mean charge of – 1.63. The K+ flux rates occurring in guard cell protoplasts were sufficient to explain guard cell turgor regulation in vivo.  相似文献   

14.
Following the biophysical analysis of plant K+ channels in their natural environment, three members from the green branch of the evolutionary tree of life KAT1, AKT1 and KST1 have recently been identified on the molecular level. Among them, we focused on the expression and characterization of the Arabidopsis thaliana K+ channel KAT1 in the insect cell line Sf9. The infection of Sf9 cells with KAT1-recombinant baculovirus resulted in functional expression of KAT1 channels, which was monitored by inward-rectifying, K+-selective (impermeable to Na+ and even NH4+) ionic conductance in whole-cell patch-clamp recordings. A voltage threshold as low as −60 to −80 mV for voltage activation compared to other plant inward rectifiers in vivo, and to in vitro expression of KAT1 in Xenopus oocytes or yeast, may be indicative for channel modulation by the expression system. A rise in cytoplasmic Ca2+ concentration (up to 1 mM), a regulator of the inward rectifier in Vicia faba guard cells, did not modify the voltage dependence of KAT1 in Sf9 cells. The access to channel function on one side and channel protein on the other make Sf9 cells a suitable heterologous system for studies on the biophysical properties, post-translational modification and assembly of a green inward rectifier.  相似文献   

15.
研究了生长在正常大气CO2和CO2倍增环境中的盐生植物碱蓬(Suaedasalsa)幼苗呼吸酶活性对KCl和NaCl的反应。结果表明,在CO2倍增(700μl·L-1)和正常大气CO2(350μl·L-1)下,300mmol·L-1KCl和NaCl均能抑制琥珀酸脱氢酶(SDH)和苹果酸脱氢酶(MDH)活性,而异柠檬酸脱氢酶(IDH)活性为NaCl抑制、KCl促进; NaCl和KCl明显抑制细胞色素氧化酶(CO)和光呼吸中乙醇酸氧化酶(GO)、羟基丙酮酸还原酶(HPR)活性; 并指出在KCl胁迫下,CO2使三羧酸循环(TCAC)的运行变慢,NaCl胁迫下使其加快,TCAC运行限速步骤与MDH无关,CO为盐对呼吸代谢影响的重要位点。另外,K+、Na+对蛋白表达的影响有差异,CO2可使盐胁迫下的碱蓬幼苗蛋白表达降低。  相似文献   

16.
以冰叶日中花(Mesembryanthemum crystallinum L.)实生苗为材料,经NaCl、NaCl+ CaCl_2、NaCl+LaCl_3处理后,利用电感耦合等离子发射光谱仪检测叶、茎、根中Na~+、K~+、Ca~(2+)、Mg~(2+)含量,计算K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+比值,利用非损伤微测技术测定根尖Na~+流和K~+流,研究盐胁迫下钙在维持离子平衡中的作用。结果显示,NaCl处理后,冰叶日中花各器官中Na~+含量增加,K~+、Ca~(2+)、Mg~(2+)含量降低,离子比值降低;CaCl_2处理降低了Na~+含量,提高了K~+、Ca~(2+)、Mg~(2+)含量,离子比值升高,而LaCl_3处理后的结果相反。经NaCl处理24 h后,冰叶日中花根尖Na~+和K~+明显外流,加入CaCl_2后,Na~+外流速度显著增加,K~+外流速度受到抑制,而加入LaCl_3后则降低了Na~+的外流速度,促进了K~+的外流。研究结果表明冰叶日中花受到盐胁迫后,钙参与了促进根部Na~+外排、抑制K~+外流的过程,进而保持各器官中较低的Na~+含量,表明钙在维持和调控离子平衡中起到重要作用。  相似文献   

17.
《植物生态学报》2017,41(4):489
Aims Elaeagnus angustifolia is one of the most salt-tolerant species. The objective of this study was to understand the mechanisms of ion transporation in E. angustifolia exposed to different salt concentrations through manipulations of K+/Na+ homeostasis.
Methods Seedlings of two variants of the species, Yinchuan provenance (YC, salt-sensitive type) and the Alaer provenance (ALE, salt-tolerant type), were treated with three different NaCl application modes, and the ion fluxes in the apical regions were measured using non-invasive micro-test technology (NMT). In mode 1, Na+ and K+ fluxes were measured after 150 mmol·L-1 NaCl stress lasted for 24 h. In mode 2, K+ and H+ fluxes were quantified with a transient stimulation of NaCl solution. In mode 3, Amiloride (Na+/H+ antiporters inhibitor) and tetraethylammonium (TEA, K+ channel inhibitor) was used to treat apical regions of E. angustifolia seedlings after NaCl stress for 24 h, respectively.
Important findings Under NaCl stress for 24 h, net effluxes of Na+ and K+ were increased significantly. The net Na+ effluxes of YC provenance seedlings (720 pmol·cm-2•s-1) were lower than that of ALE provenance (912 pmol·cm-2·s-1), but the net K+ efflux was higher in YC provenance. Under the instantaneous NaCl stimulation, net K+ efflux was remarkably increased, with the net K+ efflux of YC provenance always higher than that of ALE provenance. Interestingly, H+ at the apical regions was found from influx to efflux, with the net H+ efflux of ALE provenance greater than that of the YC provenance. Under the NaCl and NaCl + Amiloride treatment, the net Na+ efflux of ALE provenance seedlings was higher than that of YC provenance, while the net K+ efflux was less in ALE provenance seedlings. On the other hand, the differences in net Na+ and K+ effluxes were insignificant between the two provenances under the control group and NaCl + TEA treatment. In conclusion, NaCl stress caused Na+ accumulation and K+ outflows of E. angustifolia seedlings; The E. angustifolia seedlings utilize Na+/H+ antiporters to reduce Na+ accumulation by excretion; and the maintenance of K+/Na+ homeostasis in salt-tolerant E. angustifolia provenance seedlings roots accounted for a greater Na+ extrusion and a lower K+ efflux under NaCl stress. Results from this study provide a theoretical basis for further exploring salt-tolerant E. angustifolia germplasm resource.  相似文献   

18.
The amount of Na+ and K+ in isolated bovine retina outer segments and slices of outer segments obtained from frozen and freeze-dried bovine and frog retinas was established. It is shown that during the conventional procedure of isolation nearly 75% of the Na+ and K+ present in native structures was lost.

The average amount of K+ in bovine outer segments is 158 mmoles/kg dry wt.; Na+, 136 mmoles/kg dry wt. In frog outer segments there is: K+, 133 mmoles/kg dry wt.; Na+, 91 mmoles/kg dry wt.

With the help of the electron microscopic technique Na+ was shown to be located predominantly in the sacs of the outer segments. As for K+, it is, in all probability, in the extrasaccular space which agrees with some experimental biochemical data obtained.  相似文献   


19.
A large number of studies indicate that K+-induced contractions of smooth muscle depend on extracellular calcium. If these contractions depend exclusively on extracellular calcium then contractile responses to 140 mM K+, which are larger than the response to 35 mM K+, should be associated with a larger influx of 45Ca. This is not the case in the vas deferens from reserpine pretreated rats. During a 2 min interval, 45Ca influx induced by 140 mMK+ was identical to that produced by 35 mM K+. This suggests that a second mechanism may be involved in responses to high K+. Indeed, 140 mM K+ caused an approximately 300% increase above control in the formation of inositol trisphosphate (IP3) in tissues prelabelled with 3H-myoionositol whereas 35 mM K+ did not increase IP3. IP3 is thought to cause the release of calcium from internal stores which is consistent with our finding of an increase in 45Ca efflux into calcium-free medium from tissues prelabelled with 45Ca and stimulated with 140 mM K+. Stimulation with 35 mM K+ did not influence 45Ca efflux. We conclude that in the rat vas deferens high K+ promotes tension development by smooth muscle by a dual mechanism: influx of extracellular calcium and release of calcium from internal stores via a IP3 mechanism.  相似文献   

20.
以盆栽野皂荚2年生实生苗为材料,设置土壤NaCl含量分别为0.053%(CK)、0.15%、0.3%、0.45%和0.6%的盐胁迫处理,研究不同浓度盐处理对苗木生长、细胞膜透性、细胞保护酶活性以及Na+和K+分布格局的影响,探讨了其耐盐阈值和机理.结果表明:随着NaCl浓度增加,苗木生长量逐渐降低,盐害指数逐渐升高;野皂荚可忍耐的土壤含盐量为0.42%.随着NaCl浓度增加,叶片相对电导率、氧自由基产生速率和丙二醛(MDA)含量均逐渐增大;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性呈先上升后下降的变化趋势,在土壤含盐量0.3%或0.45%时达到峰值;高盐胁迫下,SOD、POD和CAT活性的增强可及时清除盐胁迫产生的氧自由基,进而缓解或避免膜脂过氧化作用对组织细胞的伤害.盐胁迫下根、茎、叶的Na+含量均逐渐增大,且呈现根>叶>茎的分布格局;K+含量和K+/Na+呈下降趋势,呈现叶>根>茎的分布格局;K+-Na+选择性运输系数(SK+·Na+)随着土壤含盐量的增加逐渐升高,且叶SK+·Na+高于茎SK+·Na+.野皂荚耐盐机制是根系拒盐和叶片耐盐;盐胁迫下,根系Na+累积能力增强可控制Na+向地上运输以避免盐害发生,叶片K+选择性吸收和累积能力的显著提高可忍耐和补偿Na+对组织的伤害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号