首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.  相似文献   

2.
Munson KB  Lambrecht N  Sachs G 《Biochemistry》2000,39(11):2997-3004
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.  相似文献   

3.
The photoaffinity reagent 8-[(4-azidophenyl)-methoxy]-1-tritiomethyl-2, 3-dimethylimidazo-[1,2-alpha]pyridinium iodide ([3H]mDAZIP) has been synthesized and used to photoinactivate and label purified hog gastric H+,K(+)-ATPase. The specific (K(+)-sensitive) components of both photoinactivation and labeling showed dependences on inhibitor concentration consistent with covalent modification at an extracytoplasmic site of reversible K(+)-competitive binding in the dark. The maximum amount of specific labeling (1.2 nmol/mg) was similar to the number of phosphorylation sites measured (1.0 +/- 0.14 nmol/mg). Specific labeling was distributed 76% on the alpha chain, 18% on the beta chain, and 6% on undefined peptides. Various digestions with trypsin, protease V8, and thermolysin were employed to fragment the labeled enzyme. Gasphase sequencing of the radioactive peptides identified the major site of specific labeling to be within a region where only two stretches of amino acids (Leu105 to Ile126 and Leu139 to Phe155, designated H1 and H2, respectively) are predicted to span the membrane. This in turn suggested that the labeling site was located within or close to the proposed loop between them (Gln127 to Asn138). A computer-driven energy minimization protocol yielded a loop structure to which SCH 28080 (the parent structure of [3H]mDAZIP) could be docked. Conversely, modeling of the corresponding region of Na+,K(+)-ATPase (a homologous enzyme with much lower affinity for SCH 28080) yielded no apparent binding site. Similarities in the inhibition of H+,K(+)-ATPase by SCH 28080 and of Na+,K(+)-ATPase by ouabain lead to the hypothesis that, in each case, inhibitor binding to E2-P is associated with an increase in the hydrophobicity of the environment of the loop between H1 and H2.  相似文献   

4.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

5.
In the reaction cycle of P-type ATPases, an acid-stable phosphorylated intermediate is formed which is present in an intracellularly located domain of the membrane-bound enzymes. In some of these ATPases, such as Na+,K+-ATPase and gastric H+, K+-ATPase, extracellular K+ ions stimulate the rate of dephosphorylation of this phosphorylated intermediate and so stimulate the ATPase activity. The mechanism by which extracellular K+ ions stimulate the dephosphorylation process is unresolved. Here we show that three mutants of gastric H+,K+-ATPase lacking a negative charge on residue 820, located in transmembrane segment six of the alpha-subunit, have a high SCH 28080-sensitive, but K+-insensitive ATPase activity. This high activity is caused by an increased 'spontaneous' rate of dephosphorylation of the phosphorylated intermediate. A mutant with an aspartic acid instead of a glutamic acid residue in position 820 showed hardly any ATPase activity in the absence of K+, but K+ ions stimulated ATPase activity and the dephosphorylation process. These findings indicate that the negative charge normally present on residue 820 inhibits the dephosphorylation process. K+ ions do not stimulate dephosphorylation of the phosphorylated intermediate directly, but act by neutralizing the inhibitory effect of a negative charge in the membrane.  相似文献   

6.
Proposed models for the catalytic subunit of the E1E2-ATPases (ion pumps) predict that the first four transmembrane domains (M1 - M4) reside in the NH2 terminal one-third of the molecule, and the remainder (M5 - M10) in the COOH terminal one-third. The amino-acid sequences for the 5'-(p-fluorosulfonyl)-benzoyl-adenosine (FSBA) binding region residing just before M5 segment are very well conserved among distinct ion pumps. Taking advantage of these models, we have constructed a set of chicken chimeric ion pumps between the (Na++ K+)-ATPase alpha-subunit and the Ca(2+)-ATPase using the FSBA-binding site as an exchange junction, thereby preserving overall topological structure as E1E2 ATPases. From various functional assays on these chimeric ion pumps, including ouabain-inhibitable ATPase activity, Ca2+ binding, Ca2+ uptake, and subunit assembly based on immuno-coprecipitation, the following conclusions were obtained: (a) A (Na++ K+)-ATPase inhibitor, ouabain, binds to the regions before M4 in the alpha-subunit and exerts its inhibitory effect. (b) The regions after M5 of the (Na++ K+)-ATPase alpha-subunit bind the beta-subunit, even when these regions are incorporated into the corresponding domains in the Ca(2+)-ATPase. (c) The corresponding domains of the Ca(2+)-ATPase, the regions after M5, bind 45Ca even when it is incorporated into the corresponding position of the (Na++ K+)-ATPase alpha-subunit.  相似文献   

7.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

8.
2-Methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080) is a reversible inhibitor specific for the gastric proton pump. The inhibition pattern is competitive with K(+). Here we studied the binding sites of this inhibitor on the putative three-dimensional structure of the gastric proton pump alpha-subunit that was constructed by homology modeling based on the structure of sarcoplasmic reticulum Ca(2+) pump. Alanine and serine mutants of Tyr(801) located in the fifth transmembrane segment of the gastric proton pump alpha-subunit retained the (86)Rb transport and K(+)-dependent ATPase (K(+)-ATPase) activities. These mutants showed 60-80-times lower sensitivity to SCH 28080 than the wild type in the (86)Rb transport activity. The K(+)-ATPase activities of these mutants were not completely inhibited by SCH 28080. The sensitivity to SCH 28080 was dependent on the bulkiness of the side chain at this position. Therefore, the side chain of Tyr(801) is important for the interaction with this inhibitor. In the three-dimensional structure of the E(2) form (conformation with high affinity for K(+)) of the gastric proton pump, Tyr(801) faces a cavity surrounded by the first, fourth, fifth, sixth, and eighth transmembrane segments and fifth/sixth, seventh/eighth, and ninth/tenth loops. SCH 28080 can dock in this cavity. However, SCH 28080 cannot dock in the same location in the E(1) form (conformation with high affinity for proton) of the gastric proton pump due to the drastic rearrangement of the transmembrane helices between the E(1) and E(2) forms. These results support the idea that this cavity is the binding pocket of SCH 28080.  相似文献   

9.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   

10.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

11.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

12.
Defining the structural and catalytic properties of the ion transport site(s) of enzyme-phosphorylating ATPases is of key importance in understanding the mechanism of ion transport by these enzymes. In the case of the H+, K(+)-ATPase, SCH 28080 (3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2a]-pyridine) has been shown to act as a high affinity, extracytosolic, K(+)-competitive inhibitor of Mg2+, K(+)-ATPase activity (Wallmark, B., Briving, C., Fryklund, J., Munson, K., Jackson, R., Mendlein, J., Rabon, E., and Sachs, G. (1987) J. Biol. Chem. 262, 2077-2084). To define the nature of the SCH 28080-binding site in relation to the catalytic cycle of the enzyme, we have investigated the effects of this potential K+ transport site probe on the steady-state and partial reactions of the H+, K(+)-ATPase. In the absence of K+, SCH 28080 inhibits Mg2(+)-ATPase activity with high affinity (apparent Ki = 30 nM). Inhibition is due to K(+)-like prevention of phosphoenzyme formation. SCH 28080 has no effect on Mg2(+)-catalyzed dephosphorylation. SCH 28080, at concentrations less than 0.5 microM, increases the apparent Km for K+ for Mg2+, K(+)-ATPase activity with little effect on the maximum velocity. At higher concentrations of SCH 28080, reversal of inhibition by higher K+ concentrations is not complete, due to inhibition of ATPase activity by high K+. In contrast, SCH 28080 inhibits K(+)-stimulated dephosphorylation by competitively displacing K+ from phosphoenzyme with an extracytosolic conformation of the monovalent cation site (E2P) at low concentrations of SCH 28080 and K+. At higher concentrations, 10 microM SCH 28080 and 50 mM K+, a slowly dephosphorylating complex with both SCH 28080 and K+ bound to E2P may form which represents a small fraction of the total E2P (15-25%). Preincubation of SCH 28080 with E2P completely blocks K(+)-stimulated dephosphorylation, and K+ is unable to reverse this preincubation effect, indicating that the SCH 28080 dissociation rate is at least as slow as K(+)-independent dephosphorylation of E2P. These findings indicate that SCH 28080 inhibits K(+)-stimulated ATPase activity by competing with K+ for binding to E2P and blocking K(+)-stimulated dephosphorylation. In the absence of K+, SCH 28080 has a higher apparent affinity for E2P, but it permits K(+)-independent dephosphorylation. Since the dissociation rate of SCH 28080 from the enzyme is slow, phosphoenzyme formation is prevented by SCH 28080 remaining bound to the extracytosolic conformation of the monovalent cation site, thereby reducing the steady-state level of phosphoenzyme.  相似文献   

13.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

14.
A rat brain cDNA library was screened by using as a probe a fragment of cDNA encoding the alpha-subunit of human Na+,K+-ATPase. Two different cDNA clones were obtained and analyzed. One of them was concluded to be a cDNA encoding the alpha-subunit of the weakly ouabain-sensitive rat kidney-type Na+,K+-ATPase. The deduced amino acid sequence consists of 1,018 amino acids. The alpha-subunit of the rat kidney-type Na+,K+-ATPase shows 97% homology in amino acid sequence with the alpha-subunit of human, sheep, or pig enzyme and 87% with that of Torpedo. Based on a comparison of the amino acid sequence at the extracellular domain of the alpha-subunit between weakly ouabain-sensitive rat kidney-type enzyme and the ouabain-sensitive human, sheep, pig, or Torpedo enzyme, it was proposed that only two significant amino acid replacements are unique to the rat kidney-type alpha-subunit. Another cDNA clone obtained showed 72% homology in nucleotide sequence with the former cDNA coding the alpha-subunit of the rat kidney-type Na+,K+-ATPase and the deduced amino acid sequence exhibited 85% homology with that of the alpha-subunit of rat kidney-type Na+,K+-ATPase.  相似文献   

15.
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.  相似文献   

16.
The cDNAs encoding alpha 3-subunits of rat brain Na+,K+-ATPase and the neomycin resistance gene were incorporated into BALB/c 3T3 cells by the co-transfection method. Stably transformed cells were selected with 300 micrograms/ml of neomycin (G-418) for 6 weeks. Northern blot analysis using the 3'-non-translated region of the cDNA as a probe revealed that the alpha 3 mRNA appeared in transfected cells. Na+,K+-ATPase activity of the transfected cells was twice that of wild-type cells. Regarding ouabain sensitivity, the Na+,K+-ATPase showed two Ki values for ouabain (8 x 10(-8) and 4.5 x 10(-5) M) in transfected cells while wild-type cells displayed only the higher value. Ouabain sensitivity of Rb+ uptake also demonstrated two Ki values in the transfected cells (8 x 10(-8) and 4 x 10(-5) M) and a Ki in wild-type cells of 4 x 10(-5) M. It is concluded that alpha 3 is a highly ouabain-sensitive catalytic subunit of Na+,K+-ATPase. It is also suggested that ouabain sensitivity is exclusively determined by the properties of the alpha-subunit rather than the beta-subunit. This is the first report on the catalytic characteristics of the alpha 3 isoform of Na+,K+-ATPase.  相似文献   

17.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

18.
Effects of free fatty acids on parameters of (Na+,K+)-ATPase regulation related to enzyme conformation were examined. Sensitivity to inhibition by free fatty acid increased as the number of double bonds increased. Free fatty acids reduced affinity for K+ or Na+ at their regulatory sites without altering apparent K+ affinity at its high-affinity site, and increased apparent affinity for ATP. The apparent E2/E1 ratio and apparent delta H and delta S for the E1-E2 transition were reduced by fatty acid. High K+ or low temperature reduced the sensitivity of enzyme to inhibition by free fatty acid. In the presence of low K+, arachidonic acid potentiated inhibition of phosphatase activity by ethanol. Arachidonic acid alone had little effect on the rate of ouabain binding, but accelerated ouabain binding in the presence of K+. These data suggest that fatty acids alter (Na+,K+)-ATPase by preventing the univalent cation-mediated transition to E2, the K+-sensitive form of enzyme. (Na+,K+)-ATPase could potentially be influenced in vivo by free fatty acids released by phospholipases or during hypoxia, or by changes in membrane lipid saturation.  相似文献   

19.
Pig kidney Na+,K+-ATPase. Primary structure and spatial organization   总被引:15,自引:0,他引:15  
cDNAs complementary to pig kidney mRNAs coding for alpha- and beta-subunits of Na+,K+-ATPase were cloned and sequenced. Selective tryptic hydrolysis of the alpha-subunit within the membrane-bound enzyme and tryptic hydrolysis of the immobilized isolated beta-subunit were also performed. The mature alpha- and beta-subunits contain 1016 and 302 amino acid residues, respectively. Structural data on the peptides from extramembrane regions of the alpha-subunit and on glycopeptides of the beta-subunit underlie a model for the transmembrane arrangement of Na+,K+-ATPase polypeptide chains.  相似文献   

20.
Na+,K(+)-ATPase is a ubiquitous plasmalemmal membrane protein essential for generation and maintenance of transmembrane Na+ and K+ gradients in virtually all animal cell types. Activity and polarized distribution of renal Na+,(+)-ATPase appears to depend on connection of ankyrin to the spectrin-based membrane cytoskeleton as well as on association with actin filaments. In a previous study we showed copurification and codistribution of renal Na+,K(+)-ATPase not only with ankyrin, spectrin and actin, but also with two further peripheral membrane proteins, pasin 1 and pasin 2. In this paper we show by sequence analysis through mass spectrometry as well as by immunoblotting that pasin 2 is identical to moesin, a member of the FERM (protein 4.1, ezrin, radixin, moesin) protein family, all members of which have been shown to serve as cytoskeletal adaptor molecules. Moreover, we show that recombinant full-length moesin as well as its FERM domain bind to Na+,K(+)-ATPase and that this binding can be inhibited by an antibody specific for the ATPase activity-containing cytoplasmic loop (domain 3) of the Na+,K(+)-ATPase alpha-subunit. This loop has been previously shown to be a site essential for ankyrin binding. These observations indicate that moesin might not only serve as direct linker molecule of Na+,K(+)-ATPase to actin filaments but also modify ankyrin binding at domain 3 of Na+,K(+)-ATPase in a way similar to protein 4.1 modifying the binding of ankyrin to the cytoplasmic domain of the erythrocyte anion exchanger (AE1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号