首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Erk1/Erk2 MAP kinases are key regulators of cell behaviour and their activation is generally associated with tyrosine kinase signalling. However, TGF-beta stimulation also activates Erk MAP kinases through an undefined mechanism, albeit to a much lower level than receptor tyrosine kinase stimulation. We report that upon TGF-beta stimulation, the activated TGF-beta type I receptor (TbetaRI) recruits and directly phosphorylates ShcA proteins on tyrosine and serine. This dual phosphorylation results from an intrinsic TbetaRI tyrosine kinase activity that complements its well-defined serine-threonine kinase function. TGF-beta-induced ShcA phosphorylation induces ShcA association with Grb2 and Sos, thereby initiating the well-characterised pathway linking receptor tyrosine kinases with Erk MAP kinases. We also found that TbetaRI is tyrosine phosphorylated in response to TGF-beta. Thus, TbetaRI, like the TGF-beta type II receptor, is a dual-specificity kinase. Recruitment of tyrosine kinase signalling pathways may account for aspects of TGF-beta biology that are independent of Smad signalling.  相似文献   

2.
Previously, we showed that cytoskeletal reorganization (CSR) induced by colchicine or cyochalasins leads to activation of the urokinase-type plasminogen activator (uPA) gene in LLC-PK(1) cells via the Ras/Erk signaling pathway [Irigoyen et al. (1997) J. Biol. Chem. 272, 1904]. It remained to be seen how CSR activates Ras/Erk signaling. Changes in cell morphology triggered by extracellular signals are often mediated by integrin-associated proteins, such as focal adhesion kinase (FAK) and Src. We found that CSR induced the activation of FAK and Src and the association of FAK and Shc, a signaling molecule linking growth factor receptor tyrosine kinase and Grb2. Furthermore, expression of either FRNK, a kinase-minus FAK-like molecule acting as a dominant negative FAK, or a dominant negative Src suppressed CSR-induced uPA gene promoter activation. These results suggest that cells respond to a morphology change, using the cytoskeleton as a sensor, by activating FAK and Src and subsequently the Ras/Erk signaling pathway.  相似文献   

3.
Angiopoietin-1 can promote migration, sprouting, and survival of endothelial cells through activation of different signaling pathways triggered by the Tie2 tyrosine kinase receptor. ShcA adapter proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to the Ras/mitogen-activated protein kinase pathway. Here we report the identification of an interaction between the adapter protein ShcA and the cytoplasmic domain of Tie2 through in vitro co-immunoprecipitation analysis. Stimulation of endogenous Tie2 in endothelial cells with its ligand angiopoietin-1 increased its association with ShcA and phosphorylation of the adapter protein. The interaction requires the SH2 domain of ShcA and the tyrosine phosphorylation of Tie2 as shown by pull-down experiments. Furthermore, Tyr-1101 of Tie2 was identified as the primary binding site for the SH2 domain of ShcA. Overexpression of a dominant-negative form of ShcA affects angiopoietin-1-induced chemotaxis and sprouting, although it has no effect on survival of endothelial cells. Furthermore, this mutant partially reduces the tyrosine phosphorylation of the regulatory p85 subunit of phosphatidylinositol 3-kinase. Together, our results identified a novel interaction between Tie2 with the adapter molecule ShcA and suggested that this interaction may play a role in the regulation of migration and three-dimensional organization of endothelial cells induced by angiopoietin-1.  相似文献   

4.
Middle T antigen (PymT) is the principal transforming component of polyomavirus, and rapidly induces hemangiomas in neonatal mice. PymT, a membrane-associated scaffold, recruits and activates Src family tyrosine kinases, and, once tyrosine phosphorylated, binds proteins with PTB and SH2 domains such as ShcA, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma-1 (PLCgamma-1). To explore the pathways required for endothelial transformation in vivo, we introduced PymT mutant forms into mice. PymT variants unable to bind PI3K and PLCgamma-1 directly induced hemangiomas similarly to wild type, but a mutant unable to bind ShcA was transformation compromised. Requirement for a ShcA PTB domain- binding site was suppressed by replacing this motif in PymT with YXN sequences, which bind the Grb2 SH2 domain upon phosphorylation. Surprisingly, PymT recruitment of ShcA and Grb2 correlated with PI3K activation. PymT mimics activated receptor tyrosine kinases by forming a ShcA-Grb2-Gab1 complex, thus inducing Gab1 tyrosine phosphorylation, which itself is associated with PI3K. Therefore, PymT activation of ShcA-Grb2 signaling is critical for endothelial transformation, and PymT can stimulate Grb2 signaling to both the MAP kinase and PI3K pathways.  相似文献   

5.
The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia, testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Tyr-823 has been demonstrated to be a late event that is not required for kinase activation. However, because phosphorylation of Tyr-823 is a ligand-activated event, we sought to investigate the functional consequences of Tyr-823 phosphorylation. By using a tyrosine-to-phenylalanine mutant of tyrosine 823, we investigated the impact of Tyr-823 on c-Kit signaling. We demonstrate here that Tyr-823 is crucial for cell survival and proliferation and that mutation of Tyr-823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared with the wild-type receptor. Furthermore, the mutated receptor was, upon ligand-stimulation, quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase Cbl was transient, followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, p38, Shc, and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells.  相似文献   

6.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

7.
ShcA proteins mediate Erk1/Erk2 activation by integrins and epidermal growth factor (EGF), and are expressed as p46ShcA, p52ShcA, and p66ShcA. Although p52ShcA and p46ShcA mediate Erk1/Erk2 activation, p66ShcA antagonizes Erk activation. p66ShcA is spatially regulated during lung development, leading us to hypothesize that integrin signaling regulates p66ShcA expression and, consequently, EGF signaling. Fetal lung mesenchymal cells were isolated from E16 Swiss-Webster mice, stimulated with oligopeptide extracellular matrix analogs or anti-integrin antibodies, and subjected to ShcA Western analyses and EGF-stimulated Erk1/Erk2 kinase assays. p66ShcA expression was decreased by anti-alpha1 integrin antibody and DGEA collagen analog, and increased by anti-beta1, anti-alpha4, and anti-alpha5 integrin antibodies and RGDS fibronectin analog. Paradoxically, beta1 integrin stimulation increased EGF-induced Erk activation while increasing expression of the inhibitory p66ShcA isoform. This paradox was resolved by demonstrating that Erk inhibition attenuates integrin-mediated p66ShcA induction. These results suggest that p66ShcA is up-regulated as inhibitory feedback on integrin-mediated Erk activation.  相似文献   

8.
Recently we reported the activation MAPKs, MEK, and Rafs by electroconvulsive shock (ECS) in the rat hippocampus. However, the upstream pathways for the activation of Raf-MEK-MAPK cascade after ECS have not been studied yet. Since the proline-rich tyrosine kinase 2 (Pyk2) and Src were reported to be involved in the activation of the MAPKs in neuronal cells, we examined tyrosine phosphorylation and activation of Pyk2 in the rat hippocampus after ECS. ECS transiently increased the phosphorylation of Pyk2 at multiple tyrosine residues (Tyr-402, Tyr-580, and Tyr-881). The phosphorylations reached the peak at 1 min and returned to basal level by 10 min after ECS. At 1 min after ECS, the binding of Pyk2 to Src and Grb2, and of Grb2 to Ras increased. These results suggested that ECS activates Pyk2, which then transmits the signal to MAPK cascade via Src, Grb2, and Ras in the rat hippocampus.  相似文献   

9.
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2–SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.  相似文献   

10.
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.  相似文献   

11.
The protein-tyrosine phosphatase Shp2 is required for normal activation of the ERK mitogen-activated protein kinase in multiple receptor tyrosine kinase signaling pathways. In fibroblasts, Shp2 undergoes phosphorylation at two C-terminal tyrosyl residues in response to some (fibroblast growth factor and platelet-derived growth factor (PDGF)) but not all (epidermal growth factor and insulin-like growth factor) growth factors. Whereas the catalytic activity of Shp2 is required for all Shp2 actions, the effect of tyrosyl phosphorylation on Shp2 function has been controversial. To clarify the role of Shp2 tyrosyl phosphorylation, we infected Shp2-mutant fibroblasts with retroviruses expressing wild type Shp2 or mutants of either (Y542F or Y580F) or both (Y542F,Y580F) C-terminal tyrosines. Compared with wild type cells, ERK activation was decreased in Y542F- or Y580F-infected cells in response to fibroblast growth factor and PDGF but not the epidermal growth factor. Mutation of both phosphorylation sites resulted in a further decrease in growth factor-evoked ERK activation, although not to the level of the vector control. Immunoblot analyses confirm that Tyr-542 and Tyr-580 are the major sites of Shp2 tyrosyl phosphorylation and that Tyr-542 is the major Grb2 binding site. However, studies with antibodies specific for individual Shp2 phosphorylation sites reveal unexpected complexity in the mechanism of Shp2 tyrosyl phosphorylation by different receptor tyrosine kinases. Moreover, because Y580F mutants retain nearly wild type Grb2-binding ability, yet exhibit defective PDGF-evoked ERK activation, our results show that the association of Grb2 with Shp2 is not sufficient for promoting full ERK activation in response to these growth factors, thereby arguing strongly against the "Grb2-adapter" model of Shp2 action.  相似文献   

12.
Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14(-/-) studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling in a tissue-specific manner. In this study, we made a novel finding that Grb14 inhibits the activity of PTP1B, the major negative regulator of insulin receptor (IR) signaling, in a phosphorylation-regulated manner. Phosphorylation of Tyr-347 in the BPS domain of Grb14 is critical for interaction with PTP1B, resulting in the competitive inhibition of PTP1B activity. We also found that rhodopsin-regulated Src kinase activation in retina leads to the phosphorylation of Grb14. Further, ablation of Grb14 resulted in significantly elevated retinal PTP1B activity in vivo. PTP1B is known to be regulated by oxidation, glutathionylation, phosphorylation, and SUMOlyation, and our study for the first time demonstrates the inhibition of PTP1B activity in vivo by protein molecule Grb14 in a tissue-specific manner.  相似文献   

13.
The amyloid precursor protein (APP) is an ubiquitous receptor-like molecule involved in the pathogenesis of Alzheimer's disease (AD). APP and some of its C-terminal proteolytic fragments (CTFs) have been shown to be phosphorylated and to interact with cytosolic phosphotyrosine binding (PTB) domain containing proteins involved in cell signaling and vesicular transport. Among others, the interaction between tyrosine-phosphorylated CTFs and ShcA-Grb2 adaptors is highly enhanced in AD brain. Here we have identified in SH-SY5Y neuroblastoma cells an interaction between APP holoprotein and the adaptor Grb2. Upon activation of apoptotic cell death this interaction is rapidly degraded, APP is partially cleaved and the complex APP/Grb2 is replaced by a new complex between CTFs and ShcA that still involves Grb2. The formation of these complexes is regulated by beta-site APP-cleaving enzyme 1 and influences the phosphorylation of mitogen-activated protein kinase p44/42 extracellular signal-regulated kinase as well as the level of apoptotic death of the cells. These data suggest a dual role in cell signaling for APP and its CTFs in neuroblastoma cells, in a manner similar to that previously reported for other tyrosine kinase receptor, through a tightly regulated coupling with alternative intracellular adaptors to control the signaling of the cell.  相似文献   

14.
The Tek/Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. To study the signal transduction pathways that are mediated by this receptor, we have used the yeast two-hybrid system to identify signaling molecules that associate with the phosphorylated Tek receptor. Using this approach, we demonstrate that five molecules, Grb2, Grb7, Grb14, Shp2, and the p85 subunit of phosphatidylinositol 3-kinase can interact with Tek in a phosphotyrosine-dependent manner through their SH2 domains. Mapping of the binding sites of these molecules on Tek reveals the presence of a multisubstrate docking site in the carboxyl tail of Tek (Tyr(1100)). Mutation of this site abrogates binding of Grb2 and Grb7 to Tek in vivo, and this site is required for tyrosine phosphorylation of Grb7 and p85 in vivo. Furthermore, stimulation of Tek-expressing cells with Angiopoietin-1 results in phosphorylation of both Tek and p85 and in activation of endothelial cell migration and survival pathways that are dependent in part on phosphatidylinositol 3-kinase. Taken together, these results demonstrate that Angiopoietin-1-induced signaling from the Tek receptor is mediated by a multifunctional docking site that is responsible for activation of both cell migration and cell survival pathways.  相似文献   

15.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

16.
The low density lipoprotein receptor-related protein (LRP1) is a transmembrane receptor that integrates multiple signaling pathways. Its cytoplasmic domain serves as docking sites for several adaptor proteins such as the Src homology 2/α-collagen (ShcA), which also binds to several tyrosine kinase receptors such as the insulin-like growth factor 1 (IGF-1) receptor. However, the physiological significance of the physical interaction between LRP1 and ShcA, and whether this interaction modifies tyrosine kinase receptor signaling, are still unknown. Here we report that LRP1 forms a complex with the IGF-1 receptor, and that LRP1 is required for ShcA to become sensitive to IGF-1 stimulation. Upon IGF-1 treatment, ShcA is tyrosine phosphorylated and translocates to the plasma membrane only in the presence of LRP1. This leads to the recruitment of the growth factor receptor-bound protein 2 (Grb2) to ShcA, and activation of the Ras/MAP kinase pathway. Conversely, in the absence of ShcA, IGF-1 signaling bifurcates toward the Akt/mammalian target of rapamycin pathway and accelerates adipocyte differentiation when cells are stimulated for adipogenesis. These results establish the LRP1-ShcA complex as an essential component in the IGF-1-regulated pathway for MAP kinase and Akt/mammalian target of rapamycin activation, and may help to understand the IGF-1 signaling shift from clonal expansion to growth-arrested cells and differentiation during adipogenesis.  相似文献   

17.
T L Shen  J L Guan 《FEBS letters》2001,499(1-2):176-181
Focal adhesion kinase (FAK) is a key mediator of integrin signaling, which has been implicated in the regulation of cell migration and cell cycle progression. Using chimeric molecules that fuse the focal adhesion targeting (FAT) sequence directly to several signaling molecules, we investigated the potential role of FAK recruitments of signaling molecules to focal contacts in the regulation of cell migration and cell cycle progression. We found that fusion of FAT to Src, the p85 subunit of phosphatidylinositol 3-kinase, Grb7 and Grb2 resulted in the efficient focal adhesion targeting of these signaling molecules. We showed that expression of Src-FAT, p85-FAT, or Grb7-FAT, but not Grb2-FAT, each stimulated cell migration. Interestingly, tyrosine phosphorylation of paxillin, but not p130cas, was induced by expression of Src-FAT, suggesting a potential role of paxillin in mediating stimulation of cell migration by the chimeric molecule. In contrast, targeting of Grb2, but not Src, p85, or Grb7, to focal contacts increased cell cycle progression. Biochemical analyses correlated Erk activation by Grb2-FAT with its stimulation of cell cycle progression. Together, these results suggest that at least part of the role of FAK interaction with these signaling molecules is to recruit them to focal contacts and that distinct FAK signaling complexes are involved in the regulation of cell migration vs. cell cycle progression.  相似文献   

18.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

19.
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.  相似文献   

20.
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号