首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Contralateral cerebellectomy can induce hypertrophy of olivary neurons in cat. In the present study we examined the ultrastructure of the cat hypertrophic inferior olive following GABA-, dopamine- and serotonin-immunocytochemistry, anterograde tracing from the mesodiencephalic junction, and intracellular labeling with HRP. Compared to normal olivary neurons the hypertrophic cells showed larger cell bodies, more and longer somatic spines which were linked by gap junctions, and longer distal dendrites with relatively few spines. The hypertrophic olivary neurons received less GABAergic boutons on their dendrites but an equal percentage was apposed to their somata as compared to normal cells. Relatively many mesodiencephalic terminals, a similar serotoninergic, and a slightly increased dopaminergic input were found. The axon of one intracellularly labeled hypertrophic cell gave off recurrent collaterals bearing varicosities filled with vesicles. These results indicated that 1) hypertrophic olivary cells are affected by trophic factors not only at the cell body but also at the level of the somatic spines, dendrites, and axon, 2) the ratio of excitatory to inhibitory terminals is increased in the hypertrophic neuropil, whereas the monoaminergic input remains stationary, and 3) the electronic coupling between hypertrophic olivary neurons has shifted from a dendritic to a more somatic location due to a relatively high number of gap junctions between the somatic spines.  相似文献   

2.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

3.
TrkB receptor signaling and activity-dependent inhibitory synaptogenesis   总被引:1,自引:0,他引:1  
When mouse organotypic cerebellar cultures were exposed to anti-GABA agents that increased neuronal activity early in development, there was a doubling of the ratio of inhibitory axosomatic synapse profiles to Purkinje cell somatic profiles after two weeks in vitro, which correlated with a decrease in spontaneous cortical discharges. When similar cultures were maintained in medium with activity blocking agents, Purkinje cell axosomatic synapses were reduced to approximately half of control values and, after recovery from activity blockade, the cultures discharged hyperactively. By contrast, the full complement of excitatory cortical synapses developed in the absence of neuronal activity. These results support the concept that neuronal activity is necessary for the complete development of inhibitory circuitry. When cerebellar cultures were simultaneously exposed to activity blocking agents and to neurotrophins BDNF or NT-4, both of which bound to the TrkB receptor, the numbers of inhibitory Purkinje cell axosomatic synapses were similar to those of untreated control cultures, and control rates of spontaneous cortical discharges were recorded. The TrkC receptor ligand, NT-3, did not promote inhibitory synapse development in the absence of neuronal activity, and such cultures exhibited hyperactive cortical discharges. These results are consistent with a role for TrkB receptor ligands in activity-dependent inhibitory synaptogenesis. Subsequent exposure of cerebellar cultures to antibody to the extracellular domain of TrkB induced an increased development of Purkinje cell axosomatic synapses, while similar antibody activation of TrkC had no effect on inhibitory synaptogenesis. The promotion of inhibitory synapse development by specific antibody activation of TrkB supports the concept that signaling for activity-dependent inhibitory synaptogenesis is via the TrkB receptor.  相似文献   

4.
The behavior of granule cells in mature cerebellar cultures derived from newborn mice was studied by light and electron microscopy. Many granule cells remained in the explants as an external granular layer. These cells were differentiated, as evidenced by formation of bundles of parallel fibers and by development of synapses between granule cell axons and Purkinje cell branchlet spines, and between Golgi cell axons and granule cell dendrites. Although the over-all architecture of the cerebellar explants after 18–33 days in vitro was similar to that of the newborn mouse, the evident differentiation of the granule cells suggested that interneuronal relationships resemble those of the mature cerebellum in vivo.  相似文献   

5.
: The distribution of hexokinase (ATP:d -hexose 6-phosphotransferase, EC 2.7.1.1) in the rat cerebellar cortex has been studied at the electron microscopic level using the peroxidase-antiperoxidase procedure. Extensive staining of cytoplasmic regions, with some increased staining at mitochondrial profiles, was seen in the cell bodies of both neurons (basket, stellate, Lugaro, Golgi, and granule cells) and astrocytes. Oligodendrocytes showed little or no detectable staining. Purkinje cell perikarya were much less intensely stained than were the perikarya of other neurons. The initial portion of the Purkinje dendrite was, like the perikaryon from which it emerged, lightly stained. More intense staining was seen in the secondary and tertiary branches of the Purkinje dendrite, but the terminal branches were devoid of stain. Granule cell dendrites were well stained in their initial portions but devoid of stain in their terminal dendritic digits which form part of the cerebellar glomeruli. In contrast to the unstained granule cell dendritic digits, the central mossy fiber nerve terminal of the glomerulus exhibited intense staining of the mitochondrial profiles and of synaptic vesicles adjacent to the mitochondria. Axons of basket cells showed intense staining in the segments adjacent to the Purkinje cell soma, while terminal twigs of the basket axons in the pinceau surrounding the (unstained) initial segment of the Purkinje axon showed markedly decreased staining intensity. These results indicate that there may be substantial variation in hexokinase levels between the various regions of neuronal processes. Hexokinase was seen at both cytoplasmic and mitochondrial locations in a variety of cells. It does not appear likely that location of hexokinase can be directly correlated with cell type, i.e., with neurons versus glia.  相似文献   

6.
Summary Scanning electron microscopy and cryofracture technique were applied to study neuronal architecture and synaptic connections of the human cerebellum. Samples were processed according to the technique of Humphreys et al. (1975) with minor modifications. The granule cells exhibit unbranched filiform axons and coniform dendritic processes. The latter show typical claw-like endings making gearing type synaptic contacts with mossy fiber rosettes. The unattached mossy rosettes appear as solid club-like structures. Some fractographs show individual granule cells, Golgi neurons and glomerular islands. The climbing fibers and their Scheibel's collaterals were also characterized. In the Purkinje layer the surface fracture was produced at the level of the Bergmann glial cells, which are selectively removed, allowing us to visualize the rough surface of Purkinje cells and the supra- and infraganglionic plexuses of basket cell axons which appeared as entangled threads. In the molecular layer the three-dimensional configuration of the Purkinje secondary and tertiary dendritic branches was obtained. The filiform parallel fibers make cruciform synaptic contacts with the Purkinje dendritic spines. The appearance of stellate neuronal somata closely resembled that of the granule cells. The subpial terminals of Bergmann fibers appeared attached to the exterior of the folia forming the rough surfaced external glial limiting membrane.  相似文献   

7.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

8.
EFA6C is a third member of the EFA6 family of guanine nucleotide exchange factors (GEFs) for ADP-ribosylation factor 6 (ARF6). In this study, we first demonstrated that EFA6C indeed activated ARF6 more selectively than ARF1 by ARF pull-down assay. In situ hybridization histochemistry revealed that EFA6C mRNA was expressed predominantly in mature Purkinje cells and the epithelial cells of the choroid plexus in contrast to the ubiquitous expression of ARF6 mRNA throughout the brain. EFA6C mRNA was already detectable in the Purkinje cells at embryonic day 13, increased progressively during post-natal development and peaked during post-natal second week. In Purkinje cells, the immunoreactivity for EFA6C was localized particularly in the post-synaptic density as well as the plasma membranes of the cell somata, dendritic shafts and spines, while the immunoreactivity in their axon terminals in the deep cerebellar nuclei was very faint. These findings suggest that EFA6C may be involved in the regulation of the membrane dynamics of the somatodendritic compartments of Purkinje cells through the activation of ARF6.  相似文献   

9.
The localization of acetylcholinesterase (AChE) was studied in the cerebellar cortex of the crossbred trembler chickens by means of histo- and cytochemical methods. No essential differences between the crossbred normal and the crossbred trembler chickens were observed. The common results were as follows: Under a light microscope AChE activity was predominantly evident in the molecular layer, and secondly in the granular layer. AChE was ultrastructurally distributed principally in the cisternae of rough endoplasmic reticulum (ER) and in a part of nuclear envelope of the Purkinje, the Golgi and some of the basket and granule cells, and in a portion of the sacculus of the Golgi apparatus of the Purkinje cell only. In dendrites and the initial axon of the Purkinje cells the smooth ER also showed AChE activity. Although dendritic terminals of the Golgi cells contained AChE reaction products, the axon terminal did not. Some of the afferent terminal fibers forming the cerebellar glomerulus exhibited weakly a positive AChE reaction, while others in the vicinity did not show any AChE activity at all. However, the enzyme reaction product was localized in the intercellular spaces between a presynaptic afferent terminal and the postsynaptic granule cell dendritic terminals in the glomerulus. In addition, AChE activity was found in the form of spots in the intercellular spaces of both molecular and granular layers.  相似文献   

10.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

11.
The cytology and synaptic organization of the insular trigeminal—cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

12.
Following a demonstration of Golgi-impregnated neurons and their terminal axon arborization in the optic tectum, the neurons of the nucleus parvocellularis and magnocellularis isthmi were studied by means of postembedded electron-microscopical (EM) γ-aminobutyric acid (GABA)-immunogold staining. In the parvocellular nucleus, none of the neuronal cell bodies or dendrites displayed GABA-like immunoreactivity in EM preparations stained by postembedded GABA-immunogold. However, numerous GABA-like immunoreactive and also unlabeled terminals established synapses with GABA-negative neurons. GABA-like immunoreactive terminals were usually found at the dendritic origin. Around the dendritic profiles, isolated synapses of both GABA-like immunoreactive and immunonegative terminals established glomerulus-like structures enclosed by glial processes. All giant and large neurons of the magnocellular nucleus of the isthmi displayed GABA-like immunoreactivity. Their cell surface was completely covered by GABA-like immunoreactive and unlabeled terminals that established synapses with the neurons. These neurons are thought to send axon collaterals to the parvocellular nucleus; their axons enter the tectum opticum. The morphological characteristics of neurons of both isthmic nuclei are like those of interneurons, because of their numerous axosomatic synapses with both asymmetrical and symmetrical features. These neurons are not located among their target neurons and exert their modulatory effect on optic transmission in the optic tectum at a distance.  相似文献   

13.
Na(+)-Ca(2+) exchanger (NCX) controls cytosolic Ca(2+) and Na(+) concentrations ([Ca(2+)](i) and [Na(+)](i)) in eukaryotic cells. Here we investigated by immunocytochemistry the cellular and subcellular localization of the three known NCX isoforms, NCX1, NCX2 and NCX3, in adult rat neocortex and hippocampus. NCX1-3 were widely expressed in both brain areas: NCX1 immunoreactivity (ir) was exclusively associated to neuropilar puncta, while NCX2-3 were also detected in neuronal somata and dendrites. NCX1-3 ir was often identified around blood vessels. In both neocortex and hippocampus, all NCX isoforms were prominently expressed in dendrites and dendritic spines contacted by asymmetric axon terminals, whereas they were poorly expressed in presynaptic boutons. In addition, NCX1-3 ir was detected in astrocytes, notably in distal processes ensheathing excitatory synapses. All NCXs were expressed in perivascular astrocytic endfeet and endothelial cells. The robust expression of NCX1-3 in heterogeneous cell types in the brain in situ emphasizes their role in handling Ca(2+) and Na(+) in both excitable and non-excitable cells. Perisynaptic localization of NCX1-3 in dendrites and spines indicates that all isoforms are favourably located for buffering [Ca(2+)](i) in excitatory postsynaptic sites. NCX1-3 expressed in perisynaptic glial processes may participate in shaping astrocytic [Ca(2+)](i) transients evoked by ongoing synaptic activity.  相似文献   

14.
Climbing fiber afferents to the cerebellum, from the inferior olivary complex, have a powerful excitatory effect on Purkinje cells. Changes in the responsiveness of olivary neurons to their afferent inputs, leading to changes in the firing rate or pattern of activation in climbing fibers, have a significant effect on the activation of cerebellar neurons and ultimately on cerebellar function. Several neuropeptides have been localized in both varicosities and cell bodies of the mouse inferior olivary complex, one of which, calcitonin gene related peptide (CGRP), has been shown to modulate the activity of olivary neurons. The purpose of the present study was to investigate the synaptic relationships of CGRP-containing components of the caudal medial accessory olive and the principal olive of adult mice, using immunohistochemistry and electron microscopy. The vast majority of immunoreactive profiles were dendrites and dendritic spines within and outside the glial boundaries of synaptic glomeruli (clusters). Both received synaptic inputs from non-CGRP labeled axon terminals. CGRP was also present within the somata of olivary neurons as well as in profiles that had cytological characteristics of axons, some of which were filled with synaptic vesicles. These swellings infrequently formed synaptic contacts. At the LM level, few, if any, CGRP-immunoreactive climbing fibers, were seen, suggesting that CGRP is compartmentalized within the somata and dendrites of olivary neurons and is not transported to their axon terminals. Thus, in addition to previously identified extrinsic sources of CGRP, the widespread distribution of CGRP within olivary somata and dendrites identifies an intrinsic source of the peptide suggesting the possibility of dendritic release and a subsequent autocrine or paracrine function for this peptide within olivary circuits.  相似文献   

15.
Previous work has established that dendritic spines, sites of excitatory input in CNS neurons, can be highly dynamic, in later development as well as in mature brain. Although spine motility has been proposed to facilitate the formation of new synaptic contacts, we have reported that spines continue to be dynamic even if they bear synaptic contacts. An outstanding question related to this finding is whether the presynaptic terminals that contact dendritic spines are as dynamic as their postsynaptic targets. Using multiphoton time-lapse microscopy of GFP-labeled Purkinje cells and DiI-labeled granule cell parallel fiber afferents in cerebellar slices, we monitored the dynamic behavior of both presynaptic terminals and postsynaptic dendritic spines in the same preparation. We report that while spines are dynamic, the presynaptic terminals they contact are quite stable. We confirmed the relatively low levels of presynaptic terminal motility by imaging parallel fibers in vivo. Finally, spine motility can occur when a functional presynaptic terminal is apposed to it. These analyses further call into question the function of spine motility, and to what extent the synapse breaks or maintains its contact during the movement of the spine.  相似文献   

16.
The Bergmann glia is a unipolar astrocyte in the cerebellar cortex, displaying a tight association with Purkinje cells. The cell bodies of Bergmann glia are located in a row around Purkinje cell somata; they extend radially arranged Bergmann fibers which enwrap the synapses on the Purkinje cell dendrites. It is well known that Bergmann glial somata migrate from the ventricular zone through the mantle zone, forming an epithelium-like lining in the Purkinje cell layer during development. However, the mechanism of the monolayer formation of Bergmann glia is poorly understood. Several reports have suggested that Notch signaling plays instructive roles in promoting the identities of several types of glial cells, including Bergmann glia. Moreover, Notch receptors are expressed in Bergmann glia during development. Here, we have deleted the Notch1, Notch2 and RBP-J genes in the Bergmann glia by GFAP-driven, Cre-mediated recombination, to study the role of Notch-RBP-J-signaling in the monolayer formation of Bergmann glia. Notch1/2- and RBP-J-conditional mutant mice showed disorganization of Bergmann fibers, irregularities of the Bergmann glial lining and aberrant localization of Bergmann glia in the molecular layer. Thus, Notch-RBP-J signaling plays crucial roles in the monolayer formation and morphogenesis of Bergmann glia.  相似文献   

17.
Previous reports described the transient expression during development of Calcitonin Gene-Related Peptide (CGRP) in rodent cerebellar climbing fibers and CGRP receptor in astrocytes. Here, mixed cerebellar cultures were used to analyze the effects of CGRP on Purkinje cells growth. Our results show that CGRP stimulated Purkinje cell dendrite growth under cell culture conditions mimicking Purkinje cell development in vivo. The stimulation was not blocked by CGRP8-37, a specific antagonist, suggesting the activation of other related receptors. CGRP did not affect survival of Purkinje cells, granule cells or astrocytes. The selective expression of Receptor Component Protein (RCP) (a component of CGRP receptor family) in astrocytes points to a role of these cells as mediators of CGRP effect. Finally, in pure cerebellar astrocyte cultures CGRP induced a transient morphological differentiation from flat, polygonal to stellate form. It is concluded that CGRP influences Purkinje cell dendrite growth in vitro, most likely through the involvement of astrocytes.  相似文献   

18.
Summary A quantitative analysis has been made of the distribution of presynaptic profiles containing round (or spheroidal) and flattened (or ellipsoidal) synaptic vesicles in the apical and basal dendritic zones and in the layer of pyramidal cell somata of fields CA1 and CA3 of the hippocampus, and in the molecular and granular layers of the dentate gyrus of the rat and cat.In the apical and basal dendritic zones of fields CA1 and CA3 the overwhelming majority of the synapses are of the asymmetrical variety, the axon terminals ending principally upon dendritic spines, and to a lesser extent upon the shafts and secondary or tertiary branches of the dendrites. Between 1 and 8% of the axon terminals in these zones contained flattened vesicles: all of these formed symmetrical contacts upon medium-sized or large dendritic shafts. In the molecular layer of the dentate gyrus a slightly higher percentage of flattened vesicle containing profiles was observed (10%); again these formed symmetrical contacts upon dendritic shafts. In the stratum pyramidale of the hippocampal fields and the stratum granulosum of the dentate gyrus of the rat, flattened vesicle containing synapses are two or three times more numerous than those with spheroidal vesicles. In the cat hippocampus the axosomatic synapses are about equally distributed between those containing round, and those with flattened vesicles.The finding that at the focus of post-synaptic inhibition, at the level of the pyramidal cell somata, the majority of the axon terminals contains flattened synaptic vesicles, whereas in the region of termination of the extrinsic, commissural and long association pathways (all of which are excitatory) virtually all the synapses contain round vesicles, strongly supports the view that endings containing flattened vesicles mediate post-synaptic inhibition in the hippocampal formation.Supported in part by Grant EY-00599 from the National Eye Institute.We should like to thank Mr. Paul Myers and Mr. Milburn W. Rhoades for their technical assistance, and Mrs. Doris Stevenson for secretarial help.  相似文献   

19.
20.
S S Tay  W C Wong 《Acta anatomica》1992,144(1):51-58
The present paper describes the long-term ultrastructural changes in the nucleus ventralis posterolateralis of the thalamus of male Wistar rats after alloxan-induced diabetes. Degenerating dendrites were characterized by an electron-dense cytoplasm with scattered endoplasmic reticulum and ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals formed axosomatic synapses with seemingly normal cell bodies and axodendritic synapses with normal as well as degenerating dendrites. Degenerating axons (both myelinated and unmyelinated) were readily encountered in the neuropil. Activated microglial and astrocytic cells in the neuropil were in the process of phagocytosis or had residua in their cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号