首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The properties of the microtubule network are regulated at various levels including tissue-dependent isotype switching, post-translational modification of alpha- and beta-tubulin, and by a variety of microtubule-associated molecules (for reviews, see [1-3]). Microtubule nucleation is attributed to gamma-tubulin, which is present in protein complexes at the centrosome and in the cytoplasm [4,5]. A screen for flagellar mutants in the green alga Chlamydomonas reinhardtii has led to the identification of a fourth member of the tubulin gene superfamily, delta-tubulin. In this unicellular organism, the lack of a functional delta-tubulin gene copy causes aberrant numbers of flagella, depending on the age of the corresponding basal bodies; mutants also show abnormal ultrastructure of the basal bodies and a misplacement of the cleavage furrow at mitosis [6]. Here, we report the isolation of the mouse delta-tubulin homologue and show that the gene is highly expressed in testis. In the elongating spermatid, delta-tubulin associated with the manchette, a specialised microtubule system present during reshaping of the sperm head. The protein specifically localised at the perinuclear ring of the manchette, at the centriolar vaults and along the principal piece of the sperm flagellum. In somatic cell lines, unlike most other tubulins, mammalian delta-tubulin was both cytoplasmic and nuclear and did not colocalise with microtubules. The protein was enriched at the spindle poles during mitosis and we found that gamma-tubulin coimmunoprecipitated with delta-tubulin. Together, the data indicate a specialised role for mammalian delta-tubulin that is distinct from other known tubulins.  相似文献   

3.
The molecular mechanisms underlying myogenic satellite cells (MSCs) differentiation into myotube-formed cells (MFCs) and transdifferentiation into adipocyte-like cells (ALCs) are unclear. As a step towards understanding the molecular mechanisms underlying MSC differentiation and transdifferentiation, we attempted to identify the genes differentially expressed during differentiation and transdifferentiation using gene microarray analysis (GMA). Thirty oligonucleotide arrays were used with two technical replicates and nine and six biological replicates for MFCs vs. MSCs and ALCs vs. MSCs, respectively, to contrast expression profile differences. GMA identified 1,224 differentially expressed genes by at least 2-fold during differentiation and transdifferentiation of MSCs. To select the highly expressed genes for future functional study, genes with a 4-fold expression difference were selected for validation by real time RT-PCR and approximately 96.9% of the genes were validated. The up-regulation of marker genes for myogenesis (MYL2, MYH3) and adipogenesis (PPAR??, and FABP4) was observed during the differentiation and transdifferentiation of MSCs into MFCs and ALCs, respectively. KOG analysis revealed that the most of the genes up-regulated during differentiation and transdifferentiation of MSCs were related to signal transduction. Again the exact location of 109 differentially expressed genes by 4-fold were analyzed by chromosome mapping. Among those, co-localization of 29 genes up-regulated during transdifferentiation with QTL for marbling score and intramuscular fat percentage supports the involvement of these genes in cellular transdifferentiation. Interestingly, some genes with unknown function were also identified during the process. Functional studies on these genes may unfold the molecular mechanisms controlling MSC differentiation and transdifferentiation.  相似文献   

4.
The homeobox protein Barx2 is expressed in both smooth and skeletal muscle and is up-regulated during differentiation of skeletal myotubes. Here we use antisense-oligonucleotide inhibition of Barx2 expression in limb bud cell culture to show that Barx2 is required for myotube formation. Moreover, overexpression of Barx2 accelerates the fusion of MyoD-positive limb bud cells and C2C12 myoblasts. However, overexpression of Barx2 does not induce ectopic MyoD expression in either limb bud cultures or in multipotent C3H10T1/2 mesenchymal cells, and does not induce fusion of C3H10T1/2 cells. These results suggest that Barx2 acts downstream of MyoD. To test this hypothesis, we isolated the Barx2 gene promoter and identified DNA regulatory elements that might control Barx2 expression during myogenesis. The proximal promoter of the Barx2 gene contained binding sites for several factors involved in myoblast differentiation including MyoD, myogenin, serum response factor, and myocyte enhancer factor 2. Co-transfection experiments showed that binding sites for both MyoD and serum response factor are necessary for activation of the promoter by MyoD and myogenin. Taken together, these studies indicate that Barx2 is a key regulator of myogenic differentiation that acts downstream of muscle regulatory factors.  相似文献   

5.
6.
7.
8.
9.
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is required for efficient skeletal-muscle regeneration and perturbing its expression causes abnormalities in the proliferation and differentiation of skeletal muscle cells. In this study, we investigated the mechanism of BDNF suppression that occurs during myogenic differentiation. BDNF is expressed at the mRNA level as two isoforms that differ in the length of their 3'UTRs as a result of alternative cleavage and polyadenylation. Sequence analysis revealed the presence of three miR-206 target sites in the long BDNF 3'UTR (BDNF-L), whereas only one site was found in the short mRNA BDNF 3'UTR (BDNF-S). miR-206 is known to regulate the differentiation of C2C12 myoblasts and its expression is induced during the transition from myoblasts to myotubes. We thus examined whether miR-206-mediated suppression is responsible for the expression pattern of BDNF during myogenic differentiation. BDNF-L was suppressed to a greater extent than BDNF-S during differentiation of C2C12 myoblasts. Transfection of a miR-206 precursor decreased activity of reporters representative of the BDNF-L 3'UTR, but not BDNF-S 3'UTR, and repressed endogenous BDNF mRNA levels. This suppression was found to be dependent on the presence of multiple miR-206 target sites in the BDNF-L 3'UTR. Conversely, suppression of miR-206 levels resulted in de-repression of BDNF 3'UTR reporter activity and increased endogenous BDNF-L mRNA levels. A receptor for BDNF, p75(NTR) , was also suppressed during differentiation and in response to miR-206, but this appeared to not be entirely mediated via a miR-206 target site its 3'UTR. Based on these observations, BDNF represents a novel target through which miR-206 controls the initiation and maintenance of the differentiated state of muscle cells. These results further suggest that miR-206 might play a role in regulating retrograde signaling of BDNF at the neuromuscular junction.  相似文献   

11.
In Allomyces arbuscula Butl., strain Bali, the ratio of protein to dry weight remained constant in exponentially growing but decreased in differentiating cultures. The adenylate pools (ATP, ADP, AMP) and energy charge which integrates them, increased during zoospore germination and stabilized around 0.9 during differentiation. The level of ATP increased early during the induction of zoosporangia for up to 1 h and then declined. The ADP and AMP remained low for most of the time except for a transient increase in ADP (first 30 min induction). The energy charge was low in spores. The rate of turnover of proteins during growth and differentiation was more or less similar for up to 1.5 h after transfer. Subsequently very little turnover of proteins occurred in the growing plants. In differentiating plants, the rate of degradation was maintained and by the end of the 4 h experimental period 30% of the vegetative proteins were degraded. The intracellular ammonium showed a peak between 30 to 60 min of induction and was higher in the differentiating mycelia than in actively growing plants, while the glutamate pool remained around 1 μmol (mg protein)−1 in both types of plants. The physiological role of these protein degradation products is discussed.  相似文献   

12.
13.
14.
Two principal kinases, p34cdc2 kinase and MAP kinase play a pivotal role in maturation of mammalian oocytes. In the porcine and bovine oocytes both kinases are activated around the time of germinal vesicle breakdown (GVBD). Butyrolactone I (BL I), a specific inhibitor of cdk kinases, prevents effectively and reversibly resumption of meiosis in the porcine and bovine oocytes. Neither p34cdc2 kinase nor MAP kinase are activated in oocytes inhibited in the GV stage. The bovine oocytes maintained for 48 h in the medium supplemented with BL I, progress subsequently to metaphase II in 91%, their cumuli expand optimally and after in vitro fertilization they possess two pronuclei. When the cdc2 kinase is blocked in the porcine oocytes by BL I, MAP kinase, activated by okadaic acid treatment, is able to substitute cdc2 kinase and induce GVBD. The histone H1 kinase activity sharply decreases in the metaphase II oocytes treated by BL I and one or two female pronuclei are formed. These data indicate that BL I is a useful tool either for the two step in vitro culture of mammalian oocytes or for their activation in nuclear transfer experiments.  相似文献   

15.
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.  相似文献   

16.
《The Journal of cell biology》1988,107(6):2191-2197
The developmental pattern of slow myosin expression has been studied in mouse embryos from the somitic stage to the period of secondary fiber formation and in myogenic cells, cultured from the same developmental stages. The results obtained, using a combination of different polyclonal and monoclonal antibodies, indicate that slow myosin is coexpressed in virtually all the cells that express embryonic (fast) myosin in somites and limb buds in vivo as well as in culture. On the contrary fetal or late myoblasts (from 15-d-old embryos) express in culture only embryonic (fast) myosin. At this stage, muscle cells in vivo, as already shown (Crow, M.T., and F.A. Stockdale. 1986. Dev. Biol. 113:238-254; Dhoot, G.K. 1986. Muscle & Nerve. 9:155-164; Draeger, A., A.G. Weeds, and R.B. Fitzsimons. 1987. J. Neurol. Sci. 81:19-43; Miller, J.B., and F.A. Stockdale. 1986. J. Cell Biol. 103:2197-2208), consist of primary myotubes, which express both myosins, and secondary myotubes, which express preferentially embryonic (fast) myosin. Under no circumstance neonatal or adult fast myosins were detected. Western blot analysis confirmed the immunocytochemical data. These results suggest that embryonic myoblasts in mammals are all committed to the mixed embryonic-(fast) slow lineage and, accordingly, all primary fibers express both myosins, whereas fetal myoblasts mostly belong to the embryonic (fast) lineage and likely generate fibers containing only embryonic (fast) myosin. The relationship with current models of avian myogenesis are discussed.  相似文献   

17.
18.
Recent genome-wide analyses have elucidated the extent of alternative splicing (AS) in mammals, often focusing on comparisons of splice isoforms between differentiated tissues. However, regulated splicing changes are likely to be important in biological transitions such as cellular differentiation, or response to environmental stimuli. To assess the extent and significance of AS in myogenesis, we used splicing-sensitive microarray analysis of differentiating C2C12 myoblasts. We identified 95 AS events that undergo robust splicing transitions during C2C12 differentiation. More than half of the splicing transitions are conserved during differentiation of avian myoblasts, suggesting the products and timing of transitions are functionally significant. The majority of splicing transitions during C2C12 differentiation fall into four temporal patterns and were dependent on the myogenic program, suggesting that they are integral components of myogenic differentiation. Computational analyses revealed enrichment of many sequence motifs within the upstream and downstream intronic regions near the alternatively spliced regions corresponding to binding sites of splicing regulators. Western analyses demonstrated that several splicing regulators undergo dynamic changes in nuclear abundance during differentiation. These findings show that within a developmental context, AS is a highly regulated and conserved process, suggesting a major role for AS regulation in myogenic differentiation.  相似文献   

19.
20.
c-myc oncogene expression inhibits the initiation of myogenic differentiation   总被引:10,自引:0,他引:10  
The role of c-myc oncogene expression in myogenic differentiation has been established by transfecting rat myoblasts of the L6 cell line with plasmid pMT-myc, in which the c-myc coding sequences were under the control of the metallothionein I promoter. We observed that the constitutive expression of the exogenous c-myc gene inhibits muscular differentiation. A diminution of the endogenous c-myc gene expression occurs within the first 24 h after the transfer of the cells to a differentiating medium. This early decrease of c-myc expression is required for cell differentiation to occur. We have also observed that exogenous myc gene expression has no effect on endogenous myc expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号