首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger.  相似文献   

2.
The present status of germinal center (GC) research is revisited using in silico simulations based on recent lymphocyte motility data in mice. The generally adopted view of several rounds of somatic hypermutations and positive selection is analyzed with special emphasis on the spatial organization of the GC reaction. We claim that the development of dark zones is not necessary for successful GC reactions to develop. We find that a recirculation of positively selected centrocytes to the dark zone is rather unlikely. Instead we propose a scenario that combines a multiple-step mutation and selection concept with a "one-way" GC in the sense of cell migration.  相似文献   

3.
Follicular dendritic cells (FDCs) play central roles in the B cell survival, proliferation, and differentiation into memory cells. Here, we show that TuJ1 (class III beta-tubulin) is expressed strongly in FDCs of human lymphoid tissue. TuJ1 has been a marker of neurons in the central and peripheral nervous systems from the early stage of neural differentiation. FDCs expressed TuJ1 protein diffusely in both light and dark zones of germinal centers in all human lymphoid tissues. In contrast, CD21 expression was relatively concentrated to the light zone, suggesting that TuJ1 was a marker for FDCs with broader spectrum than CD21. In addition to the germinal center, there were single TuJ1-expressing cells scattered in the mantle zone, blurring the border of the FDC network. In human tonsils, single scattered TuJ1-positive cells were also present in the crypt epithelium, suggesting a dynamic redistribution of FDCs among the antigen-rich epithelium, mantle zone, and germinal center. Such migration of FDCs could reflect a way of direct transport of various antigens carried on their surface to the germinal center, and a basis for the polarity of lymphoid follicles toward the epithelium in mucosa-associated lymphoid tissues. HK cells, cultured FDCs, also expressed TuJ1. The expression of TuJ1 by FDCs suggests that they may share certain biological characteristics of the neural system.  相似文献   

4.
The localization of insulin-like growth factor I (IGF-I, also called somatomedin C) production in porcine epiphysial growth plates of the distal humerus was studied by immunohistochemistry. Counterstaining with Alcian blue-van Gieson demonstrated two cell types (blue and red cells) in the germinal (reserve), proliferating and hypertrophic zones; only those chondrocytes of the proliferative and hypertrophic zones that stained red were also immunoreactive to the antibody to IGF-I. The results indicate that there exists a functional heterogeneity among the chondrocytes of both the proliferative and hypertrophic zones of growth cartilage and that IGF-I is locally produced in only the red cells of these zones. Because the red cells of the germinal zone were not immunoreactive, the results suggest that the red cells of the germinal zone and the red cells of the proliferative and hypertrophic zones are also functionally distinct.  相似文献   

5.
A long-standing paradigm in B cell immunology is that effective somatic hypermutation and affinity maturation require cycling between the dark zone and light zone of the germinal center. The cyclic re-entry hypothesis was first proposed based on considerations of the efficiency of affinity maturation using an ordinary differential equations model for B cell population dynamics. More recently, two-photon microscopy studies of B cell motility within lymph nodes in situ have revealed the complex migration patterns of B lymphocytes both in the preactivation follicle and post-activation germinal center. There is strong evidence that chemokines secreted by stromal cells and the regulation of cognate G-protein coupled receptors by these chemokines are necessary for the observed spatial cell distributions. For example, the distribution of B cells within the light and dark zones of the germinal center appears to be determined by the reciprocal interaction between the level of the CXCR4 and CXCR5 receptors and the spatial distribution of their respective chemokines CXCL12 and CXCL13. Computer simulations of individual-based models have been used to study the complex biophysical and mechanistic processes at the individual cell level, but such simulations can be challenging to parameterize and analyze. In contrast, ordinary differential equations are more tractable, but traditional compartment model formalizations ignore the spatial chemokine distribution that drives B cell redistribution. Motivated by the desire to understand the motility patterns observed in an individual-based simulation of B cell migration in the lymph node, we propose and analyze the dynamics of an ordinary differential equation model incorporating explicit chemokine spatial distributions. While there is experimental evidence that B cell migration patterns in the germinal center are driven by extrinsically regulated differentiation programs, the model shows, perhaps surprisingly, that feedback from receptor down-regulation induced by external chemokine fields can give rise to spontaneous interzonal and intrazonal oscillations in the absence of any extrinsic regulation. While the extent to which such simple feedback mechanisms contributes to B cell migration patterns in the germinal center is unknown, the model provides an alternative hypothesis for how complex B cell migration patterns might arise from very simple mechanisms.  相似文献   

6.
Foxp3(+) regulatory T (T(reg)) cells suppress different types of immune responses to help maintain homeostasis in the body. How T(reg) cells regulate humoral immunity, including germinal center reactions, is unclear. Here we identify a subset of T(reg) cells expressing CXCR5 and Bcl-6 that localize to the germinal centers in mice and humans. The expression of CXCR5 on T(reg) cells depends on Bcl-6. These CXCR5(+)Bcl-6(+) T(reg) cells are absent in the thymus but can be generated de novo from CXCR5(-)Foxp3(+) natural T(reg) precursors. A lack of CXCR5(+) T(reg) cells leads to greater germinal center reactions including germinal center B cells, affinity maturation of antibodies and the differentiation of plasma cells. These results unveil a Bcl-6-CXCR5 axis in T(reg) cells that drives the development of follicular regulatory T (T(FR)) cells that function to inhibit the germinal center reactions.  相似文献   

7.
The stimulation of coeliac rat lymph nodes was performed by intraperitoneal injections of typhoid vaccine and was unique for the primary immune response and repeated after 6 weeks for the secondary response. The light and electron microscopic observations showed for the primary response, an early germinal center reaction, which might be accounted for by a background of continuous stimulation of the coeliac nodes, stemming from the digestive tract. The dendritic reticulum cells (DRC), considered typical for the B area, were located at the borderline between the germinal center and the mantle zone. Their cytoplasmic extensions penetrated the lymphocyte-lymphoblastic center, surrounding most of the germinal center cells. The marginal zone and the paracortex reacted as a whole, the interdigitating cells (IDC) being the dominant feature. An explanation would be that the marginal zone can be penetrated by T cells and connected IDCs, thus, the B and T areas seem to be largely interspersed. The results suggest that IDCs are cells of direct monocytic origin.  相似文献   

8.
9.
Splenic germinal center reactions were measured during primary response to a plasmidic DNA intramuscular injection. Cardiotoxin-pretreated Balb/c mice were immunized with DNA plasmids encodmg or not the SAG1 protein, a membrane antigen of Toxoplasma gondii. Specific anti-SAG1 antibodies were detected on days 16 and 36 after injection of coding plasmids. The results of ELISAs showed that the SAG1-specific antibodies are of the IgG2a class. Morphometric analyses were done on serial immunostained cryosections of spleen and draining or non-draining lymph nodes. This new approach made it possible to evaluate the chronological changes induced by DNA immunisation in the germinal centres (in number and in size). Significant increases in the number of germinal centres were measured in the spleen and only in draining lymph nodes after plasmid injection, the measured changes of the germinal centers appeared to result from the adjuvant stimulatory effect of the plasmidic DNA since both the coding and the noncoding plasmid DNA induced them. No measurable changes were recorded in the T-dependent zone of lymph organs.  相似文献   

10.
Summary The cellular composition of the dark and light zones of germinal centres in human tonsils was quantitatively determined by electron microscopy. In addition to the well known germinal-centre B-cells, we defined the cleaved blast as a new distinct cell type in the germinal centre. The dark and the light zones clearly differed in their content of lymphoid and non-lymphoid germinal-centre cells. The dark zone was characterized by higher frequencies of cleaved blasts and small centroblasts, a higher blast-centrocyte ratio and a higher incidence of mitotic figures. In contrast, the light zone had higher frequencies of centrocytes, centroplasmacytoid cells, lymphocytes and follicular dendritic cells (FDC) and an inverted blast-centrocyte ratio. Seven distinct appearances of FDC (FDC.1-FDC.7) could be recognized on the basis of their ultrastructure. The distribution pattern of these subtypes differed between the dark and light zone. The undifferentiated subtypes FDC.2 and FDC.3 predominated in the dark zone. In contrast, the highly differentiated subtypes FDC.4 and FDC.5 were present at a much higher density in the light zone. These findings suggest that the dark and light zones are different compartments with regard to proliferation and differentiation of germinal-centre B-cells and that both compartments have a specific microenvironment influenced by FDC.  相似文献   

11.
W M Steven 《Acta anatomica》1986,125(3):201-207
Although sheep erythrocytes (SRBCs) are extensively used as an antigen in immunological studies, their histological distribution in lymphoid tissues has received little attention. The objective of this study was to determine the histological distribution of injected SRBCs in rat spleen. SRBCs were labelled with fluorescein isothiocyanate (FITC) to facilitate their identification in spleen sections with fluorescence microscopy. Rats received intravenous injections of FITC-labelled SRBCs and were sacrificed at various periods after injection. At 15 min, SRBCs were distributed throughout the marginal zone and red pulp. After 4 h, intact SRBCs were located mainly in the red pulp, while the marginal zone contained fluorescent flocculent material. At later periods this material was present in the periarterial lymphatic sheath (PALS) and in the light and dark zones of the germinal centers. By 12 h, the most intensely labelled areas in the white pulp were the crescent-shaped light zones. In 12 and 24 h, the PALS contained numerous foci of labelled granules. Some of the dark zones also contained label. After 48 h, the only areas containing label were the light zones of the germinal centers.  相似文献   

12.
During the development of the central nervous system, progenitor cells, located within distinct germinal zones, produce presumptive neurons that migrate to their destinations and differentiate. Recent studies have demonstrated that a discrete region of the anterior part of the postnatal subventricular zone (SVZa) comprises neuronal progenitor cells whose progeny are fated to become the interneurons of the olfactory bulb. The SVZa is of particular interest because it is one of few germinal zones to persist postnatally and may be the only postnatal germinal zone to give rise exclusively to neurons. To the extent that the SVZa is unique among proliferative zones, the SVZa progeny are unique among neurons. First, unlike most cortical neurons, the SVZa-derived cells do not rely on radial glia-assisted migration when traveling to their target region. Second, the SVZa progeny continue to proliferate as they migrate to their target region. And third, the SVZa progeny express early neuron-specific antigens prior to their final division and, therefore, prior to reaching their destination where they will terminally differentiate. To better understand the capacity of the SVZa progeny to concurrently proliferate, migrate, and differentiate, we studied the cells in vitro and following transplantation into the neonatal SVZa and adult striatum. In each setting, we found that the SVZa cells continue both to proliferate and to differentiate into neurons. In addition, after homotopic and heterotopic transplantation, we found that the SVZa cells maintain their ability to migrate. These results suggest that the unique features of the SVZa progeny are specified intrinsically rather than by their extrinsic environment.  相似文献   

13.
Previous studies have suggested that B cell Ag receptor (BCR) down-regulation by potentially pathological autoreactive B cells is associated with pathways leading to developmental arrest and receptor editing, or anergy. In this study we compare the primary development of B cells in two strains of mice expressing transgenic BCRs that differ by a single amino acid substitution that substantially increases reactivity for nuclear autoantigens such as DNA. Surprisingly, we find that both BCRs promote efficient development to mature follicular phenotype, but the strongly autoreactive BCR fails to promote marginal zone B cell development. The follicular B cells expressing the strongly autoreactive BCR do not appear to be anergic, as they robustly respond to polyclonal stimuli in vitro, are not short-lived, and can participate in germinal center reactions. Strikingly however, substantial and progressive down-modulation of surface IgM and IgD takes place throughout their primary development in the BM and periphery. We propose that BCR-autoantigen interactions regulate this pathway, resulting in reduced cellular avidity for autoantigens. This process of "learned ignorance" could allow autoreactive B cells access to the foreign Ag-driven memory B cell response, during which their self-reactivity would be attenuated by somatic hypermutation and selection in the germinal center.  相似文献   

14.
Normal lymphoid tissue development and function depend upon directed cell migration. Providing guideposts for cell movement and positioning within lymphoid tissues, chemokines signal through cell surface receptors that couple to heterotrimeric G proteins, which are in turn subject to regulation by regulator of G protein signaling (RGS) proteins. In this study, we report that germinal center B lymphocytes and thymic epithelial cells strongly express one of the RGS family members, RGS13. Located between Rgs1 and Rgs2, Rgs13 spans 42 kb on mouse chromosome 1. Rgs13 encodes a 157-aa protein that shares 82% amino acid identity with its 159-aa human counterpart. In situ hybridization with sense and antisense probes localized Rgs13 expression to the germinal center regions of mouse spleens and Peyer's patches and to the thymus medulla. Affinity-purified RGS13 Abs detected RGS13-expressing cells in the light zone of the germinal center. RGS13 interacted with both Gialpha and Gqalpha and strongly impaired signaling through G(i)-linked signaling pathways, including signaling through the chemokine receptors CXCR4 and CXCR5. Prolonged CD40 signaling up-regulated RGS13 expression in human tonsil B lymphocytes. These results plus previous studies of RGS1 indicate the germinal center B cells use two RGS proteins, RGS1 and RGS13, to regulate their responsiveness to chemokines.  相似文献   

15.
Influenza virus infection results in strong, mainly T-dependent, extrafollicular and germinal center B cell responses, which provide lifelong humoral immunity against the homotypic virus strain. Follicular T helper cells (T(FH)) are key regulators of humoral immunity. Questions remain regarding the presence, identity, and function of T(FH) subsets regulating early extrafollicular and later germinal center B cell responses. This study demonstrates that ICOS but not CXCR5 marks T cells with B helper activity induced by influenza virus infection and identifies germinal center T cells (T(GC)) as lymph node-resident CD4(+) ICOS(+) CXCR4(+) CXCR5(+) PSGL-1(lo) PD-1(hi) cells. The CXCR4 expression intensity further distinguished their germinal center light and dark zone locations. This population emerged strongly in regional lymph nodes and with kinetics similar to those of germinal center B cells and were the only T(FH) subsets missing in influenza virus-infected, germinal center-deficient SAP(-/-) mice, mice which were shown previously to lack protective memory responses after a secondary influenza virus challenge, thus indicting the nonredundant functions of CXCR4- and CXCR5-coexpressing CD4 helper cells in antiviral B cell immunity. CXCR4-single-positive T cells, present in B cell-mediated autoimmunity and regarded as "extrafollicular" helper T cells, were rare throughout the response, despite prominent extrafollicular B cell responses, revealing fundamental differences in autoimmune- and infection-induced T-dependent B cell responses. While all ICOS(+) subsets induced similar antibody levels in vitro, CXCR5-single-positive T cells were superior in inducing B cell proliferation. The regulation of T cell localization, marked by the single and coexpression of CXCR4 and CXCR5, might be an important determinant of T(FH) function.  相似文献   

16.
The light microscopic structure of the testis and genital duct system of the freshwater stingray Himantura signifer was observed. The testis is composed of lobes having numerous spermatocysts in a dorsoventral zonated arrangement. The germinal papilla at the middorsal surface of the testicular lobe is the origin site of spermatocyst development, where mesenchymal-like cells are predominantly found. The association of a Sertoli cell precursor with a spermatogonium marks the onset of spermatocyst formation and development. The newly formed spermatocysts at the dorsal end of the germinal zone replace the older ones, which are sequentially moved to the ventral side and are termed spermatogonial, spermatocyte, spermatid, spermatozoal, and degenerate zones. In the degenerate zone, the spermatocysts deteriorate after releasing the spermatozoa into the intratesticular duct, where they are further transported through the extratesticular duct system and finally stored at the seminal vesicle. The epithelial lining of the genital duct is a pseudostratified ciliated columnar with no muscular layer underneath; thus, sperm are conveyed through ciliary activity. The interesting features of the present study are the finding of mesenchymal-like cells in the germinal papilla and the nonaggregated formation of sperm in the seminal vesicle.  相似文献   

17.
Summary The migration pattern of germinal center cells of the rabbit appendix was studied and compared with that of appendix dome cells, spleen cells, thymus cells and thoracic duct lymphocytes. To discriminate T-and B-cell migration pathways, normal or T-cell-depleted rabbits were used as donors. Cell suspensions were labeled in vitro with 3H-leucine followed by intravenous transfer. The migration of labeled cells in lymphoid organs was studied using autoradiography, particular attention being paid to the spleen of the recipient. B-cells from the appendix dome, spleen and thoracic-duct lymph migrate to primary follicles or the corona of secondary follicles via thymus-dependent areas of peripheral lymphoid organs. In contrast, a B-cell subpopulation from the germinal centers of the appendix migrates to the center of splenic primary follicles and into germinal centers. The migration of germinal center cells to splenic follicle centers is not enhanced by specific antigens. The migration properties of B-cells, possibly changing during differentiation, may be instrumental in the two types of immune reactions, i.e., plasma-cell reaction and germinal-center reaction.  相似文献   

18.
19.
The localization of T- and B lymphocytes and interdigitating cells (IDC) was investigated during the regeneration process of splenic implants. For this purpose a two-step immunoperoxidase technique was used to visualize T-cell antigen, immunoglobulins and Ia-antigen on cryostat sections. The specific localization of the repopulating lymphocytes occurred simultaneously with the development of non-lymphoid elements characteristic for the different compartments of the white pulp, i.e., the periarteriolar lymphocyte sheaths (PALS) and follicles. The marginal zone (MZ) developed after the PALS and primary follicles, but before germinal center reactions were found. During ontogeny, however, the development of a broad MZ precedes the formation of follicles. This difference in sequence of events is discussed.  相似文献   

20.
Cell and Tissue Research - Human follicular dendritic cell (FDC)-like cells (FLC) have been utilized for the in vitro analysis of germinal center reactions. However, there is no consensus whether...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号