首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective : Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. Research Methods and Procedures : Mature 3T3‐L1 adipocytes were incubated with ajoene at concentrations up to 200 μM. Viability and apoptosis were quantified using an MTS‐based cell viability assay and an enzyme‐linked immunosorbent assay for single‐stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen‐activated protein kinases extracellular signal‐regulating kinase 1/2 (ERK) and c‐Jun‐N‐terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase‐3, translocation of apoptosis‐inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116‐kDa poly(ADP‐ribose) polymerase (PARP)‐1. Results : Ajoene induced apoptosis of 3T3‐L1 adipocytes in a dose‐ and time‐dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116‐kDa PARP‐1 in a caspase‐independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N‐acetyl‐l ‐cysteine effectively blocked ajoene‐mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP‐1. Discussion : These results indicate that ajoene‐induced apoptosis in 3T3‐L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen‐activated protein kinases, degradation of PARP‐1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.  相似文献   

2.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

3.
Esculetin induces mitochondria-mediated apoptosis in 3T3-L1 adipocytes   总被引:1,自引:0,他引:1  
Adipose tissue mass is determined by the volume and the number of adipocytes and is subjected to homeostatic regulation involving cell death mechanisms. We investigated the effects of esculetin, a coumarin compound, on apoptotic signaling in 3T3-L1 adipocytes. Esculetin treatment induced an increase in expression of Bax with a concomitant decrease of Bcl-2 in a time-dependent manner. Esculetin treatment also resulted in translocation of cytochrome c from mitochondria to cytosol and cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP)-1, resulting in the accumulation of an 85 kDa cleavage product in a caspase-dependent manner. Furthermore, esculetin selectively altered the phosphorylation state of members of the MAPK superfamily, causing dephosphorylation of extracellular signal-regulating kinase 1/2 (ERK1/2) and hyperphosphorylation of c-Jun-N-terminal kinase (JNK). In addition, an inhibitor of the JNK MAP kinase pathway, SP600125, reduced esculetin-induced cytochrome c release. These results indicate that esculetin mediated adipocyte apoptosis involves the mitochondrial pathway. Esculetin thus decreases adipocyte number by initiating this apoptotic process in 3T3-L1 adipocytes. This work was supported by the Georgia Research Alliance, AptoTec, Inc., and by the Georgia Research Alliance Eminent Scholar endowment held by CAB.  相似文献   

4.
It is well established that somatotropin (GH) antagonizes insulin action in vivo and that supraphysiologic concentrations of GH frequently result in insulin resistance and glucose intolerance. However, the demonstration of an anti-insulin activity by GH in vitro has been difficult. This study, therefore, set out to determine whether cultures of 3T3-L1 adipocytes could be used to examine the anti-insulin activity of GH. The ability of insulin to stimulate glucose utilization by 3T3-L1 adipocytes increases approximately five-fold during the first 4 days following treatment of the cells with a differentiation medium. It was found that glucose utilization in 3T3-L1 adipocytes is regulated in a reciprocal fashion by insulin and GH. Bovine or human GH directly inhibit up to 50% of insulin-stimulated [14C]-glucose incorporation into lipids in a concentration-dependent manner. The 3T3-L1 sensitivity to GH appears to be at the maximum (50% inhibition of an insulin response) immediately following removal of the cells from the differentiation medium and remains essentially constant during the subsequent 4 days. The GH inhibition of insulin action does not appear to be due GH enhancement of cellular degradation of insulin, competitive binding of GH to the insulin receptor, or GH-induced decrease in cell number. The 3T3-L1 adipocyte system appears to be a sensitive and reliable in vitro model with which to study the molecular mechanisms involved in both GH antagonism of insulin action and development of hormone responsiveness during cellular differentiation into adipocytes.  相似文献   

5.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

6.
3T3-L1 adipocytes have proven difficult to transfect with plasmid-encoded cDNAs or even infect with virally-derived cDNAs. We have developed and characterized a 3T3-L1 adipocyte cell line stably expressing the truncated receptor for coxsackievirus and adenovirus receptor (CAR) for its ability to be infected with adenoviruses at a low multiplicity of infection (m.o.i.). Using green fluorescent protein driven by the cytomegalovirus promoter in adenovirus fiber type 5 we compared infection efficiencies of CAR adipocytes versus the parental 3T3-L1 adipocytes. As assessed by immunofluorescence, CAR adipocytes were infected at approximately 100-fold greater efficiency than regular 3T3-L1 adipocytes. The efficiency of transduction for the CAR adipocytes was >90% at multiplicities of infection of 50 whereas standard adipocytes were poorly transduced even at an m.o.i. of 2000. Since many investigators studying insulin action use 3T3-L1 adipocytes, we compared CAR adipocytes versus regular adipocytes and showed that the two cell lines were similar with respect to insulin stimulation of insulin receptor, MAPK, and Akt phosphorylation and basal- and insulin-stimulated glucose transport. In addition, CAR adipocytes accumulated GLUT4 and SCD1 proteins during the adipogenesis program with the same time course as regular 3T3-L1 adipocytes. Lastly, CAR adipocytes produced and secreted the adipose-specific hormone Acrp30. These data suggest 3T3-L1CARDelta1 adipocytes are virtually indistinguishable from their parental cells, but demonstrate a significant advantage with improved efficiency of adenoviral transduction for gain or deletion of function studies.  相似文献   

7.
8.
9.
Metformin is a common and generally the first medication prescribed for treatment of type 2 diabetes. Its mechanism involves affecting pathways that regulate glucose and lipid metabolism in metabolic cells such as that of muscle and liver cells. In spite of various studies exploring its effects, the proteome changes in adipocytes in response to metformin remains poorly understood. In this study, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic profiling to study the effects of metformin specifically on 3T3-L1 adipocytes. We define proteins that exhibited altered levels with metformin treatment, 400 of them showing statistically significant changes in our study. Our results suggest that metformin affects not only the PPAR signaling pathway, as well as glucose and lipid metabolism, but also protein folding, endoplasmic reticulum stress, negative regulation of appetite, and one-carbon folate metabolism in adipocytes. This proteomic investigation provides important insight into effects of metformin in adipocytes.  相似文献   

10.
11.
12.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

13.
The effect of intracellular free fatty acid (FFA) accumulation on ob gene expression in adipocytes was examined. In fully differentiated 3T3-L1 adipocytes, triacsin C, a specific acyl CoA synthetase inhibitor with a K(i) of 8.97 microM, inhibited ob gene expression by 20% at 5 x 10(-5)M. At this concentration, triacsin C induced accumulation of intracellular FFA. Treatment with both chylomicron and triacsin C reduced ob gene expression more than treatment with triacsin C alone. Treatment with 2-bromopalmitate, a poorly metabolizable palmitate analog, reduced ob gene expression by 50% at 10(-4)M, but palmitate at the same concentration had no effect. This is the first demonstration that the ob gene is downregulated by intracellular FFA accumulation, thereby raising the possibility that ob product is regulated in response to lipolysis.  相似文献   

14.
The effects of sterculic acid on cell size, adiposity, and fatty acid composition of differentiating 3T3-L1 adipocytes are correlated with stearoyl-CoA desaturase (SCD) expression (mRNA and protein levels) and enzyme activity. Fluorescence-activated cell scanning (FACS) analysis showed that adipocytes differentiated with methylisobutylxanthine, dexamethasone, and insulin (MDI) plus 100 microM sterculic acid comprised a population of predominantly large cells with reduced adiposity compared to MDI-treated cells. Although both groups had similar amounts of total fat, their fatty acid profiles were strikingly different: MDI-treated cells had high levels of the unsaturated palmitoleic (Delta(9)-16:1) and oleic (Delta(9)-18:1) acids, whereas the cells cultured with MDI plus sterculic acid accumulated palmitic (16:0) and stearic (18:0) acids together with a marked reduction in Delta(9)-16:1. Although the cells treated with MDI plus sterculic acid had similar levels of scd1 and scd2 mRNAs and antibody-detectable SCD protein as the MDI-treated cells, the SCD enzyme activity was inhibited more than 90%. The accumulation of 16:0 and 18:0, together with normal levels of fatty acid synthase (FAS) and aP2 mRNAs, shows that de novo synthesis and elongation of fatty acids, as well as cell differentiation, were not affected by sterculic acid. Because of the increase in cell size in the sterculic acid-treated cells, the insulin-stimulated 2-deoxyglucose (2-DOG) uptake was determined. Compared to MDI-treated cells, the 2-DOG uptake in the cells treated with sterculic acid was not affected. These results indicate that sterculic acid directly inhibits SCD activity, possibly by a turnover-dependent reaction, without affecting the processes required for adipocyte differentiation, scd gene expression or SCD protein translation.  相似文献   

15.
Obesity is associated with systemic oxidative stress and leads to insulin resistance. Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, has been shown to have beneficial effects in improving cellular defense activities against oxidative stress through activation of nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. However, little evidence exists if the antioxidative activity has beneficial effects on glucose metabolism. Here, we tested the preventive potential of PEITC for impaired insulin-induced glucose uptake by oxidative stress in 3T3-L1 adipocytes. Treatment with PEITC increased the expression of antioxidative enzymes regulated by Nrf2 such as γ-glutamylcysteine-synthetase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase, and reduced oxidative stress induced by H2O2. Furthermore, PEITC restored impaired insulin-stimulated glucose uptake, translocation of glucose transporter 4 and insulin signaling by H2O2. These results indicate that PEITC protected insulin-regulated glucose metabolism impaired by oxidative stress through the antioxidative activity in 3T3-L1 adipocytes.  相似文献   

16.
17.
Zhao YF  Zhu YL  Chen C 《生理学报》2004,56(2):253-257
为明确脂肪细胞对胰岛素细胞中KATP通道表达的直接影响,MIN6胰岛素细胞被分为两组:一组为对照组,一组与分化的3T3-L1脂肪细胞共培养1周。运用半定量RT-PCR方法测定MIN6细胞中KATP通道蛋白Kir6.2的表达变化,Fura-2荧光方法测定MIN6细胞内钙浓度的变化,放射免疫测定方法明确MIN6细胞的胰岛素分泌功能。结果显示,与3T3-L1脂肪细胞共培养1周后,MIN6细胞中Kir6.2的表达明显减少,其表达水平降低为对照组的65.3%。对照组MIN6细胞在0.1mmoi/L甲苯磺丁脲(KATP通道关闭剂)的刺激下,表现为细胞内钙水平显著性升高和胰岛素分泌显著性增加,而共培养组MIN6细胞则失去了甲苯磺丁脲刺激所引起的细胞内钙升高及胰岛素分泌反应。以上实验结果表明,3T3-L1脂肪细胞可以通过分泌一些活性因子直接降低MIN6细胞中KATP通道蛋白的表达和合成,损害MIN6细胞的胰岛素分泌功能。实验结果提示脂肪细胞直接参与2型糖尿病中胰岛β细胞功能障碍的发生。  相似文献   

18.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

19.
Adiponectin, one of adipokines that is secreted from adipocytes, plays an important role in the regulation of glucose and lipid metabolism. Paradoxically, serum concentrations of adiponectin are decreased in obese and type 2 diabetic patients, although it is produced in adipose tissue. On the other hand, plasma TNF-alpha levels are increased in such subjects. In the present study, the mechanism by which adiponectin is regulated by TNF-alpha was investigated. The decreased adiponectin mRNA levels by TNF-alpha were partially recovered by treatment with a c-Jun N-terminal kinase (JNK) inhibitor or the PPAR-gamma agonist rosiglitazone in 3T3-L1 adipocytes. Interestingly, however, cotreatment with the JNK inhibitor and rosiglitazone led to a recovery of TNF-alpha-mediated adiponectin suppression to the control level. The JNK inhibitor regulated the expression of adiponectin by the increase of PPAR-gamma DNA binding activity and the recovery of its mRNA expression while rosiglitazone acted via a PPAR-gamma independent pathway which remains to be elucidated. These findings suggest that the JNK signaling pathway, activated by TNF-alpha, is involved in the regulation of adiponectin expression.  相似文献   

20.
Methotrexate (MTX) is broadly used in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA). The prevalence of metabolic syndrome (MeS) in patients with this condition is relatively high. Given the importance of adipose tissue in the development of obesity metabolic complications, this study aimed to investigate the effect of methotrexate on preadipocyte proliferation, adipogenesis, and glucose uptake by adipocytes. 3T3-L1 preadipocytes proliferation was evaluated by sulforhodamine B staining and 3H-thymidine incorporation, after 24 or 48 h of treatment with MTX (0.1 and 10 μM). Preadipocytes were induced to differentiate with an appropriate adipogenic cocktail in the presence or absence of MTX. Adipogenesis was determined by measuring lipid accumulation after staining with oil red O. 3H-Deoxyglucose (3H-DG) uptake was determined by liquid scintillation counting. MTX treatment reduced culture protein content in a concentration-dependent manner and 3H-thymidine incorporation (P?<?0.05). MTX (0.1 μM) treatment increased lipid accumulation and basal 3H-DG uptake by adipocytes (P?<?0.05). In 0.1 μM MTX-treated adipocytes, insulin stimulation did not result in an increase of 3H-DG uptake, contrarily to what was observed in control cells. These results demonstrate that methotrexate interferes with adipocyte proliferation and promotes the hypertrophic growth of adipocytes. These molecular effects may have implications on metabolic profile of RA patients treated with MTX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号