首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A photosystem for solar energy conversion, comprised of a culture of green microalgae supplemented with methyl viologen, is proposed. The capture of solar energy is based on the Mehler reaction. The reduction of methyl viologen by the photosynthetic apparatus and its subsequent reoxidation by oxygen produces hydrogen peroxide. This is a rich-energy compound that can be used as a nonpollutant and efficient fuel. Four different species of green microalgae, Chlamydomonas reinhardtii (21gr) C. reinhardtii (CW15), Chlorella fusca, and Monoraphidium braunii, were tested as a possible biocatalyst. Each species presented a different efficiency level in the transformation of energy. Azide was an efficient inhibitor of the hydrogen peroxide scavenging system while maintaining photosynthetic activity of the microalgae, and thus significantly increasing the production of the photosystem. The strain C. reinhardtii (21gr), among the species studied, was the most efficient with an initial production rate of 185 micromol H(2)O(2)/h x mg Chl and reaching a maximum of 42.5 micromol H(2)O(2)/mg Chl when assayed in the presence of azide inhibitor.  相似文献   

2.
It is well known that catalase is transformed to nitric oxide-Fe2+-catalase by hydrogen peroxide (H2O2) plus azide. In this report, we show that myeloperoxidase is also inactivated by H2O2 plus azide. Utilizing this system, we studied the presence and source of intracellular H2O2 generated by activated neutrophils. Stimulation of neutrophils with phorbol myristate acetate (PMA, 100 ng/ml) plus azide (5 mM) for 30 min completely inactivated intragranular myeloperoxidase and reduced cytosolic catalase to 35% of resting cells. This intracellular inactivation of heme enzymes did not occur in normal neutrophils incubated with either PMA or azide alone or in neutrophils from patients with chronic granulomatous disease (CDG) which cannot produce H2O2 in response to PMA. Incubation of neutrophils with azide and a H2O2 generating system (glucose-glucose oxidase) inactivated 41% of neutrophil myeloperoxidase. Glutathione-glutathione peroxidase (GSH-GSH peroxidase), an extracellular H2O2 scavenger, totally protected neutrophil myeloperoxidase from inactivation by azide plus glucose-glucose oxidase. In addition, when a mixture of normal and CGD cells was stimulated with PMA in the presence of azide, 90% of the myeloperoxidase in CGD neutrophils was inactivated. Therefore, H2O2 released extracellularly from activated neutrophils can diffuse into cells. In contrast, myeloperoxidase in normal polymorphonuclear leukocytes stimulated with PMA in the presence of azide and GSH-GSH peroxidase was 75% inactivated. Thus, the results indicate that a GSH-GSH peroxidase-insensitive pool of H2O2 is also generated, presumably at the plasma membrane, and this pool of H2O2 can undergo direct internal diffusion to inactivate myeloperoxidase.  相似文献   

3.
The stimuli, sn-1, 2-dioctanoylglycerol; (DG8) the calcium specific ionophore, ionomycin, and the chemotactic peptide formylmethionyl-leucyl-phenylalanine (FMLP) can interact with normal human neutrophils and activate their superoxide/hydrogen peroxide generating NADPH-oxidase. In response to the peptide as well as DG8, the neutrophils produced both superoxide (O2-) and hydrogen peroxide (H2O2). Since interaction between the cells and ionomycin was not associated with any notable superoxide production and hydrogen peroxide was induced only in the presence of azide, a potent inhibitor of the hydrogen peroxide-consuming enzymes catalase and myeloperoxidase, we conclude that this stimulus can generate oxygen metabolites intracellularly. Since the DG8-induced production of hydrogen peroxide was increased in the presence of azide, whereas the FMLP-induced response was largely unaffected, we concluded that the three stimuli differ in their capacity to generate oxygen metabolites intracellularly. The use of sn-1,2-didecanoylglycerol (DG10) as stimulating agent did not result in any detectable activation of the NADPH-oxidase. However, preincubation caused an increased (primed) response during stimulation with the chemotactic peptide FMLP. The response of primed neutrophils to FMLP proceeds with a time-course different from that seen in normal cells. From the results presented on FMLP-induced activity in the presence of azide, we conclude that FMLP causes normal cells to produce oxygen radicals which are released from the cells. However, the primed cells are also capable of generating oxygen metabolites that are retained inside the cells. In fact, measurement of the intracellularly generated metabolites discloses this to be the predominant part of the response.  相似文献   

4.
The DAB reactivity of the midintestine of the earthworm, consisting of epithelial layer, muscle layer, and chloragogen tissue, was examined electron microscopically. Besides the mitochondrial membranes of the examined cell types and the hemoglobin content of the blood vessels and chloragogen cells, a considerable DAB reactivity was found in the whole cytosol of the chloragocytes. The DAB reaction of the cytosol was more intensive when incubation medium for catalase, less intensive when incubation medium for peroxidase, was used and did not occur when H2O2 was omitted. Cytosol of the chloragogen cells was isolated and preliminary assay of catalase and peroxidase activities was made. Cytosol samples showed moderate peroxidase activity, but catalase activity measured by the decomposition of hydrogen peroxide showed a very high rate. Catalase and peroxidase activities of the cytosol were heat-sensitive and might have been inhibited by azide and cyanide, respectively. Results prove the assumption that the intensive DAB reactivity of the chloragocyte cytosol is caused by its extraperoxisomal catalase content.  相似文献   

5.
Extracellular release of superoxide anion (O-2) and hydrogen peroxide (H2O2) during the respiratory burst of porcine and human neutrophils was studied by using diacetyldeuteroheme-substituted horseradish peroxidase as a trapping agent for these oxygen derivatives. The method permitted simultaneous measurement of oxygen consumption and formation of both O-2 and H2O2 in a single reaction mixture. When neutrophils were stimulated with phorbol myristate acetate in the presence of the heme-substituted peroxidase, a rapid accumulation of compound III, a complex of the enzyme with O-2, was observed accompanying an increase in oxygen consumption. During the process, amounts of compound III formed and oxygen consumed were stoichiometric, and no compound II, an indicator of H2O2 formation, was observed. These results establish that neutrophils stimulated with the phorbol ester produce exclusively O-2 as the primary oxygen metabolite and release it into the extracellular medium. When a limited amount of opsonized zymosan was used as the stimulus, compound III formation was also observed but it ceased at an early stage of oxygen consumption. When a sufficient amount of azide was included in the system, however, formation of compound II was noted in the later stage of oxygen consumption. The findings suggest that O-2, formed during phagocytosis, is converted to H2O2 within phagosomes and then diffuses out into the extracellular medium when its decomposition by catalase and/or peroxidases is blocked by azide.  相似文献   

6.
Serum from normal human subjects contained variable amounts of catalase activity, which was inhibitable by heat, azide, trichloroacetic acid (TCA), or aminotriazole treatment. Serum also decreased hydrogen peroxide (H2O2) concentrations in vitro and H2O2-mediated injury to cultured endothelial cells. By comparison, heat-, azide-, TCA-, or aminotriazole-treated serum neither decreased H2O2 concentrations in vitro nor reduced H2O2-mediated damage to endothelial cells. We conclude that serum catalase activity can alter H2O2-dependent reactions. We speculate that variations in serum catalase activity may alter individual susceptibility to oxidant-mediated vascular disease or be a factor when added to test systems in vitro.  相似文献   

7.
The purpose of the present study was to evaluate the mechanism of microbial resistance to oxidative stress induced by photolysis of hydrogen peroxide (H(2)O(2)) in relation to microbial catalase activity. In microbicidal tests, Staphylococcus aureus and Candida albicans were killed and this was accompanied by production of hydroxyl radicals. C. albicans was more resistant to hydroxyl radicals generated by photolysis of H(2)O(2) than was S. aureus. A catalase activity assay demonstrated that C. albicans had stronger catalase activity; accordingly, catalase activity could be one of the reasons for the resistance of the fungus to photolysis of H(2)O(2). Indeed, it was demonstrated that C. albicans with strong catalase activity was more resistant to photolysis of H(2)O(2) than that with weak catalase activity. Kinetic analysis using a modified Lineweaver-Burk plot also demonstrated that the microorganisms reacted directly with hydroxyl radicals and that this was accompanied by decomposition of H(2)O(2). The results of the present study suggest that the microbicidal effects of hydroxyl radicals generated by photolysis of H(2)O(2) can be alleviated by decomposition of H(2)O(2) by catalase in microorganisms.  相似文献   

8.
T. cruzi: sensitization to macrophage killing by eosinophil peroxidase   总被引:8,自引:0,他引:8  
In this study, we report that trypomastigotes of T. cruzi coated with eosinophil peroxidase (EPO) become sensitized to killing by normal macrophages that are unable to kill uncoated organisms. EPO bound to the surface of the organisms without affecting their extracellular viability. The intracellular killing of EPO-coated trypomastigotes could be inhibited by catalase and azide, suggesting that toxicity was mediated through the small amounts of hydrogen peroxide generated by the phagocytic event in normal macrophages and the peroxidatic activity of EPO. EPO-coated organisms could be killed in a cellfree system by the addition of H2O2 and either iodide, bromide, or chloride. Omission of H2O2 decreased but did not prevent the killing of trypanosomes by the cellfree system and this residual toxicity was abolished by catalase. This suggests that H2O2 generated by trypanosomes contributes to the death of EPO-coated organisms. EPO-coated organisms could also be killed extracellularly when exposed to normal macrophages at high parasite to cell ratios or when a high phagocytic load of another particle was given simultaneously. This effect could be inhibited by both azide and catalase, but not by superoxide dismutase. This suggests that enough H202 is released by phagocytosis of a high number of organisms to generate toxic concentrations of H2O2 outside the confines of the vacuolar system.  相似文献   

9.
Glucose oxidase (GO) was encapsulated in the liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to increase the enzyme stability through its decreased inhibition because of hydrogen peroxide (H(2)O(2)) produced in the glucose oxidation. The GO-containing liposomes (GOLs) were completely free of the inhibition even in the complete conversion of 10 mM glucose at 25 degrees C because the H(2)O(2) concentration was kept negligibly low both outside and inside liposomes throughout the reaction. It was interestingly revealed that the H(2)O(2) produced was decomposed not only by a slight amount of catalase originally contained in the commercially available GO but also by the lipid membranes of GOL. As compared to the GOL-catalyzed reaction, the free GO-catalyzed reaction more highly accumulated H(2)O(2) because of the more rapid glucose conversion despite containing free catalase, leading to the completely inhibited GO before reaching a sufficient glucose conversion. This suggested that only the liposomal catalase could continue to catalyze the H(2)O(2) decomposition. The effect of the glucose oxidation rate, i.e., the H(2)O(2) production rate on the liposomal GO inhibition, was also examined employing the various GOLs with different permeabilities to glucose present in their external phase. It was concluded that the liposomal GO free of the inhibition could be obtained when the GOL-catalyzed H(2)O(2) formation rate was limited by such a suitable lipid bilayer as POPC membrane so that the rate was well-balanced with the sum of the above two H(2)O(2) decomposition rates. The highly stable GOL obtained in the present paper was shown to be a useful biocatalyst for the prolonged glucose oxidation.  相似文献   

10.
No catalase activity was detected in four strains of glucose-grown Mycoplasma pneumoniae at any time during the replication of the organism. Exogenous catalase dramatically increased the O(2) uptake with glycerol, presumably by releasing inhibition caused by hydrogen peroxide. The effect of added catalase on the O(2) uptake of washed organisms with glucose as substrate was moderate and variable in degree. The production of hydrogen peroxide was demonstrated by the quantitative enzymatic assay for inorganic peroxide and by the fact that added pyruvate, which is non-enzymatically oxidized by H(2)O(2) to acetic acid and CO(2) could mimic the action of catalase.  相似文献   

11.
Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.  相似文献   

12.
S Roth  W Dr?ge 《Cellular immunology》1987,108(2):417-424
Activated macrophages are known to release a variety of immunoregulatory substances including the low-molecular-weight substances hydrogen peroxide and lactate. We report here that lactate but not hydrogen peroxide is capable of supporting a substantial production of T-cell growth factor (TCGF) in cultures of accessory cell-depleted splenic T-cell populations after stimulation with concanavalin A. Hydrogen peroxide and its biosynthetic precursor superoxide anion (O2-) mediate, however, a strong augmentation of the TCGF production by accessory cell-depleted T-cell populations in the presence of lactate. Lactate inhibits the incorporation of [3H]thymidine in short-term cultures (18-26 hr) of accessory cell-depleted T cells. This confirms the rule that (optimal) production of T-cell growth factor requires a growth inhibitory signal. Concentrations of hydrogen peroxide which augment TCGF production most effectively (i.e., 1 X 10(-5) M) do not inhibit the incorporation of [3H]thymidine; and higher concentrations (3 X 10(-5)-1 X 10(-4) M) of hydrogen peroxide inhibit both the production of TCGF and the incorporation of [3H]thymidine. In agreement with the augmenting effect of hydrogen peroxide on TCGF production, it was observed that the proliferative response in mixed lymphocyte cultures is suppressed by catalase and augmented by 1 X 10(-5) M H2O2. Proliferative and cytotoxic responses in mixed lymphocyte cultures with an external source of interleukin 2 (IL-2) in contrast, are not augmented by 1 X 10(-5) M H2O2. The relatively high concentration of 1 X 10(-4) M hydrogen peroxide was found to inhibit the proliferative responses in mixed lymphocyte cultures with or without external IL-2 but not the cytotoxic response in the presence of IL-2. This indicates that CTL precursor cells may be relatively resistant against H2O2.  相似文献   

13.
A peroxide-resistant mutant (PR) was isolated from Proteus mirabilis using the hydrogen peroxide mutagenic property. Under the same conditions, resistance of mutant PR bacteria to H2O2 was 50 to 100 times greater than that of the wild type. The total amount of catalase produced by P. mirabilis PR was on the average 10 times greater than that of the wild type. When PR bacteria were subjected to high doses of H2O2 (150mM), the determination of catalasic activity in vivo increased; paradoxically, there was a net decrease in the activity of the solubilized catalase after the breakdown of the cells. The hypothesis of an enzyme transfer from the inside towards the periphery of the cells is discussed. The behavior of a membrane enzyme (L-phenylalanine oxidase) of the PR mutant shows that H2O2 may cause lesions way up to the internal membrane of bacteria.  相似文献   

14.
Methyl jasmonate (MeJA)-induced stomatal closure is accompanied by the accumulation of hydrogen peroxide (H?O?) in guard cells. In this study, we investigated the roles of catalases (CATs) in MeJA-induced stomatal closure using cat mutants cat2, cat3-1 and cat1 cat3, and the CAT inhibitor, 3-aminotriazole (AT). When assessed with 2',7'-dichlorodihydrofluorescein, the reduction of catalase activity by means of mutations and the inhibitor accumulated higher basal levels of H?O? in guard cells whereas they did not affect stomatal aperture in the absence of MeJA. In contrast, the cat mutations and the treatment with AT potentiated MeJA-induced stomatal closure and MeJA-induced H?O? production. These results indicate that CATs negatively regulate H?O? accumulation in guard cells and suggest that inducible H?O? production rather than constitutive elevation modulates stomatal apertures in Arabidopsis.  相似文献   

15.
The production conditions of superoxide dismutase (SOD) in the cells of Streptococcus lactis by using hyperbaric oxygen (O(2)) are described. The SOD activity of anaerobically grown cells was 5-6 U/mg protein. When the culture broth was pressurized by O(2) at 6 atm, the SOD activity was more than twice as high as that under anaerobic culture conditions. However, there is little or no significant increase in SOD activity by exogenous addition of catalase for detoxifying hydrogen peroxide accumulated in the broth and/or controlling the pH of the broth at 6.8 during the pressurization by O(2). The increase in SOD activity by hyperbaric O(2) was possible not only at the late-logarithmic growth phase but also at the initial time for the stationary growth phase. For improvement of SOD productivity, we tried a two-stage culture in which SOD activity in S. lactis cells was enhanced by pressurizing the culture broth using hyperbaric O(2) after achievement of a high-concentration cultivation in the anerobic fermentation system with a microfiltration module.  相似文献   

16.
方芳  戴传超  王宇 《生物工程学报》2009,25(10):1490-1496
一株属于小克银汉霉属(Cunninghamellasp.)的内生真菌(编号为AL4)制成的粗诱导子可以诱发茅苍术悬浮细胞产生多种防卫反应,包括一氧化氮(NO)、过氧化氢(H2O2)迸发和挥发油合成加强。NO专一性淬灭剂cPTIO和H2O2淬灭剂过氧化氢酶(CAT)则不仅可以分别抑制AL4粗诱导子引起的茅苍术细胞的NO和H2O2迸发,还都能部分阻断AL4粗诱导子促进茅苍术细胞挥发油合成。添加NO供体硝普钠(SNP)和H2O2都可引起茅苍术细胞中挥发油积累增加,但二者效果不同。因此暗示着NO和H2O2都是介导内生真菌AL4粗诱导子促进茅苍术悬浮细胞挥发油合成的信号分子。同时添加NO的淬灭剂cPTIO和H2O2的淬灭剂CAT并不能完全抑制AL4粗诱导子引起的茅苍术细胞挥发油积累增加,这表明内生真菌AL4粗诱导子还可以通过其他方式促进茅苍术悬浮细胞挥发油合成。  相似文献   

17.
1. The velocity of decomposition of hydrogen peroxide by catalase as a function of (a) concentration of catalase, (b) concentration of hydrogen peroxide, (c) hydrogen ion concentration, (d) temperature has been studied in an attempt to correlate these variables as far as possible. It is concluded that the reaction involves primarily adsorption of hydrogen peroxide at the catalase surface. 2. The decomposition of hydrogen peroxide by catalase is regarded as involving two reactions, namely, the catalytic decomposition of hydrogen peroxide, which is a maximum at the optimum pH 6.8 to 7.0, and the "induced inactivation" of catalase by the "nascent" oxygen produced by the hydrogen peroxide and still adhering to the catalase surface. This differs from the more generally accepted view, namely that the induced inactivation is due to the H2O2 itself. On the basis of the above view, a new interpretation is given to the equation of Yamasaki and the connection between the equations of Yamasaki and of Northrop is pointed out. It is shown that the velocity of induced inactivation is a minimum at the pH which is optimal for the decomposition of hydrogen peroxide. 3. The critical increment of the catalytic decomposition of hydrogen peroxide by catalase is of the order 3000 calories. The critical increment of induced inactivation is low in dilute hydrogen peroxide solutions but increases to a value of 30,000 calories in concentrated solutions of peroxide.  相似文献   

18.
Alkaline solutions of hydrogen peroxide partially delignify wheat straw and other lignocellulosic materials, leaving a cellulosic residue that is highly susceptible to enzymatic digestion by cellulase. The delignification reaction is strongly dependent upon the pH of the reaction mixture, with an optimum at pH 11.5-11.6, pKa for the dissociation H(2)O(2) right harpoon over left harpoon H(+) + HOO(-). The data are consistent with a mechanism in which H(2)O(2) decomposition products such as .OH and O(2) (-)., rather than H(2)O(2) or HOO(-), are the primary lignin oxidizing species. During the course of the delignification reaction, O(2) is evolved from the reaction mixture indicating active H(2)O(2) decomposition. At a given concentration of H(2)O(2), the rate of O(2) evolution is proportional to the amount of lignocellulosic substrate present in the reaction mixture. However, the total amount of O(2) evolved is inversely proportional to the amount of substrate present, indicating that some of the peroxide oxygen becomes incorporated into lignin degradation products. The amount of peroxide oxygen incorporated can range as high as 2 O(2) per lignin C(9) unit, depending upon the initial concentration of lignocellulosic substrate.  相似文献   

19.
In cell suspension cultures of Taxus chinensis, 40 mg/l fungal elicitor from Aspergillus niger and 20 microM HgCl2 elicited 5.7 and 3.6 mg/l taxol, which was a 9-fold and 5-fold increase vs. compared with the control, respectively. The fungal elicitor induced hydrogen peroxide (H2O2) accumulation but HgCl2 did not, indicating that H2O2 was not necessary for enhancement of taxol induced by elicitor. Compared with the treatment with fungal elicitor alone, exogenous catalase, ascorbic acid, diphenylene iodonium and superoxide dismutase induced a 0.45, 0.4, 0.7 and 1.4-fold H2O2, but elicited taxol production, which was 0.98, 1.2, 1.1 and 0.9-fold, respectively, vs. non-treated cells Elicitor-induced taxol production was not accorded with the amount of H2O2 production.  相似文献   

20.
Toxicity to the central nervous system (CNS) by hyperbaric oxygen (HBO) presumably relates to increased production of reactive oxygen species. The sites of generation of reactive oxygen species during HBO, however, have not been fully characterized in the brain. We investigated the relationship between regional generation of hydrogen peroxide (H2O2) in the brain in the presence of an irreversible inhibitor of catalase, aminotriazole (ATZ), and protection from CNS O2 toxicity by a monoamine oxidase (MAO) inhibitor, pargyline. At 6 ATA of oxygen, pargyline significantly protected rats from CNS O2 toxicity whereas ATZ enhanced O2 toxicity. In animals pretreated with ATZ, HBO inactivated 21-40% more catalase than air exposure in the six brain regions studied. Because ATZ-mediated inactivation of catalase was H2O2 dependent, the decrease in catalase activity during hyperoxia was proportional to the intracellular production of H2O2. Pargyline, administered 30 min before HBO, inhibited MAO by greater than 90%, prevented ATZ inhibition of catalase activity during HBO, and reversed the augmentation of CNS O2 toxicity by ATZ. These findings indicate that H2O2 generated by MAO during hyperoxia is important to the pathogenesis of CNS O2 toxicity in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号