首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13 compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.  相似文献   

2.
Aim We present a model to account for self‐assembly of the slough–ridge–tree island patterned landscape of the central Everglades in southern Florida via feedbacks among landforms, hydrology, vegetation and biogeochemistry. We test aspects of this model by analysing vegetation composition in relation to local and landscape‐level drivers. Location We quantified vegetation composition and environmental characteristics in central Water Conservation Area (WCA) 3A, southern WCA‐3A and southern WCA‐3B in southern Florida, based on their divergence in water management and flow regimes over the past 50 years. Methods In 562 quadrats, we estimated species coverages and quantified maximum, minimum and average water depth, soil depth to bedrock, normalized difference vegetation index (NDVI) and proximity to the nearest tree island. We used non‐metric multi‐dimensional scaling (NMS) to relate compositional variation to local and landscape‐level factors, and evaluated environmental differences among eight a priori vegetation types via anova . Results Water depth and hydroperiod decreased from sloughs to ridges to tree islands, but regions also differed significantly in the abundance of several community types and the hydroregimes characterizing them. NMS revealed two significant axes of compositional variation, tied to local gradients of water depth and correlated factors, and to a landscape‐scale gradient of proximity to tall tree islands. Sawgrass height and soil thickness increased toward higher ridges, and NDVI was greatest on tree islands. Main conclusions This study supports four components of our model: positive feedback of local substrate height on itself, woody plant invasion and subsequent P transport and concentration by top predators nesting on taller tree islands, compositional shifts in sites close to tree islands due to nutrient leakage, and flow‐induced feedback against total raised area. Regional divergence in the relationship of community types to current hydroregimes appears to reflect a lag of a few years after shifts in water management; a longer lag would be expected for shifts in landscape patterning. Both local and landscape‐level drivers appear to shape vegetation composition and soil thickness in the central Everglades.  相似文献   

3.
The biologically mediated transfer of nutrients from one part of a landscape to another may create nutrient gradients or subsidize the productivity at specific locations. If limited, this focused redistribution of the nutrient may create non-random landscape patterns that are unrelated to underlying environmental gradients. The Florida Everglades, USA, is a large freshwater wetland that is patterned with tree islands, elevated areas that support woody vegetation. A survey of 12 tree islands found total soil phosphorus levels 3–114 times greater on the island head than the surrounding marsh, indicating that the Florida Everglades is not a homogeneous oligotrophic system. It was estimated that historically 67% of the phosphorus entering the central Everglades was sequestered on tree islands, which are ~3.8% of the total land area. This internal redistribution of phosphorus onto tree islands due to the establishment of trees may be one reason that marshes have remained oligotrophic and may explain the spatial differentiation of the patterned Everglades landscape.  相似文献   

4.
The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.  相似文献   

5.
Ecotones play and important role in control of matter input into water bodies. The impacts of shelterbelt and meadow ecotones on ground water passage from cultivated fields to pond were studied. The reduction of water flux due to evapotranspiration by shelterbelts and meadows on slopes of different steepness were estimated. The horizontal passage of heat energy between cultivated fields and ecotones, which enhances evaporation in shelterbelts and meadows was demonstrated. The reduction of ground water flux by a ten meter wide shelterbelt or meadow surrounding a pond can reach as much as 100 per cent when the slope is about 1 degree, during a sunny day. Shelterbelts are a more effective measure for control of cycling matter than meadows. The greater the slope of the water table and the more intensive the radiation and advective processes, the more distinct the differences between shelterbelt and meadow impacts on groundwater flow are.  相似文献   

6.
景观格局-土壤侵蚀研究中景观指数的意义解释及局限性   总被引:14,自引:0,他引:14  
刘宇  吕一河  傅伯杰 《生态学报》2011,31(1):267-275
景观格局分析是景观生态学研究的重要组成部分。景观指数是景观格局分析的有力工具。近年来,景观格局与土壤侵蚀关系的相关研究增多,常规景观格局指数得到应用。但针对土壤侵蚀过程的景观指数意义解释不足,景观指数在刻画景观格局-土壤侵蚀过程关系存在局限。选择了连接性、多样性、边界/斑块密度、形状4个方面的12个常用景观指数,对这些指数在景观格局-土壤侵蚀过程关系研究中的意义进行阐述,对指数应用的局限性及其原因进行了分析。景观数据属性、景观指数本身性质和土壤侵蚀过程的复杂性使得常规景观格局指数在景观格局-土壤侵蚀关系研究中存在不足。这3方面的影响使得常规景观格局指数与土壤侵蚀表征变量之间不存在确定的关系,从而难以通过景观指数来表征景观土壤侵蚀特征。缺乏土壤侵蚀过程基础是常规景观指数在土壤侵蚀研究应用中存在局限的主要原因。因此,构建基于土壤侵蚀过程的景观指数是景观格局-土壤侵蚀关系研究的需要和新的发展方向。  相似文献   

7.
景观空间异质性对生态系统服务形成与供给的影响   总被引:1,自引:0,他引:1  
刘绿怡  卞子亓  丁圣彦 《生态学报》2018,38(18):6412-6421
景观空间异质性与生态系统服务的关系极为密切,适当调整景观空间异质性有助于生态系统服务的持续形成与稳定供给。研究景观空间异质性和生态系统服务形成与供给之间的相互影响作用及响应机制具有重要的理论与现实意义,是保护生物多样性、管理生态系统服务与优化景观空间配置的基础。现有研究大多在不同尺度上探讨了景观格局与生态过程或生态系统服务间的相互影响关系,而缺乏景观格局-生态过程-生态系统服务三者间有效联结等方面的研究。景观空间异质性是怎样直接或间接地作用于生态系统服务形成与供给的,目前还没有一个较为明确的解释。因此,通过分析国内外文献,回顾了景观格局或景观空间异质性与生态系统服务之间关系的研究进展、研究内容和研究方法;从景观组成、景观构型的变化入手,讨论了景观空间异质性对生态系统服务形成与供给的影响及其强度,并认为景观组成异质性变化能够直接影响生态系统服务,而景观构型异质性变化会通过改变生态过程而间接影响生态系统服务;阐述了景观空间异质性在影响生态系统服务形成与供给的同时,也使生态系统服务在空间上产生了异质性分布,并从自然因素和人为因素两个方面对其进行解释;强调了尺度问题在景观空间异质性与生态系统服务研究中的重要性;最后,明确了对生态系统服务形成与供给的景观空间异质性影响研究不仅有助于生态系统服务的维持与调节,也能更深层次地揭示其中的生态学意义。  相似文献   

8.
干旱区尤其沙漠边缘地区的风沙与植被相互作用对塑造地表景观具有重要意义。选择库布齐沙漠南缘的油蒿灌丛地为研究区,开展了植被调查、风沙流观测和表层沉积物粒度采样测试,分析了顺风向植被盖度、风沙流结构与沉积物特征的沿程变化,探讨了风沙-植被相互作用及其对地表景观格局的影响。结果表明,风沙流与植被相互作用方式的改变使植物生长状况与地表蚀积模式发生变化,进而导致顺风向景观表现出明显的空间异质性。自上风向裸地过渡到均匀分布的新生油蒿和油蒿灌丛再至斑块状分布的灌丛沙堆,植被盖度与覆沙厚度先增大后减小,空气动力学粗糙度沿程不断增加且在过渡时其增幅最大,输沙率与沉积物粒度呈先减小后增大趋势,并在植被盖度与覆沙厚度最大处出现最小值。在沙漠边缘剥蚀高原上,起初适量风沙堆积促进油蒿定植与生长,均匀分布的油蒿灌丛进一步促进沙物质堆积,但当堆积厚度超过油蒿耐沙埋深度时发生退化,灌丛出现斑块状分布且风沙流在丘间地处侵蚀。据此,可理解为剥蚀高原风沙区景观异质性是风沙与植被相互协同与抑制作用的结果。  相似文献   

9.
郝敬锋  刘红玉  胡俊纳  李玉凤  郑囡 《生态学报》2010,30(15):4154-4161
综合利用遥感、GIS技术、景观生态和实验分析方法,选择南京市紫金山东郊17个典型湿地,在2008年3月至2009年3月期间进行野外湿地水体水质监测。以每个湿地所在的小流域为景观单元,通过SPSS系统聚类分析将17个小流域划分3类,揭示城市化影响区域小流域土地利用特征及其对湿地水体质量影响,结果表明:(1)城市土地利用对湿地水质影响显著。以林地斑块为主要景观类型的小流域水质比以草地斑块为主的小流域水质好,林地面积越大,湿地水质越好;(2)通过引入增强斑块指数ZQI、削减斑块指数XJI、及增强-削减斑块对比指数R_ZXI,进一步揭示小流域内景观格局与水质之间的相关关系。研究表明,当R_ZXI小于-1时,随着R_ZXI的增加,一些易流失营养型污染物质TN、CODMn呈下降趋势,而当其大于-1呈上升趋势;一些易沉积营养物质如TP则表现出相反变化趋势;(3)小流域内各景观斑块空间上分布越均匀,湿地水体中的易流失营养型污染物质表现出下降趋势,而易沉积型营养物质则表现出上升的趋势。  相似文献   

10.
The relationship between water chemistry and vegetation was studied in a coastal ombrotrophic mire in northern Hokkaido, Japan. The distributions of Sphagnum and Phragmites communities were separated clearly by the pH and ion concentration of the peat surface-pore water. The drainage ditches along the road across the center of the mire had a high pH and ion concentration, as did the peat water in the western part of the mire. It was found that fields used for livestock farming on a hill to the west of the mire leached materials into the mire through drainage ditches, surface runoff, and probably also through ground water, and thus influenced the water chemistry of the mire. Management of the water, including that in the catchment of the mire, should be introduced before biological buffering capacity against excess nutrient loading caused by human activity is exceeded and the mire loses its ombrotrophic status.  相似文献   

11.
旅游景观生态系统格局:概念与空间单元   总被引:5,自引:0,他引:5  
旅游景观生态系统作为一个复杂的自然-人文生态系统,内部的人地关系区别于一般景观生态系统,但现有的格局研究难以反映.基于景观生态学与空间结构理论,在已有研究基础上,提出旅游景观生态系统格局的概念,并构建空间单元体系.首先,旅游景观生态系统格局可理解为旅游者的活动作用于系统地域范围所形成的空间分异与组织形式;其次,旅游景观生态系统格局的空间单元可划分为斑块、廊道和基质,其中斑块由节点与域面组成.旅游景观生态系统格局理论提出的目的是通过旅游者空间分布状况的分析,反映系统内部要素之间相互作用过程的空间差异.这一理论的提出有助于推动景观格局与生态过程研究的深入,并能为区域旅游业发展的空间协调管理提供理论支持.  相似文献   

12.
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.  相似文献   

13.
14.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

15.
16.
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.  相似文献   

17.
We determined evapotranspiration in three experiments designed to study the effects of elevated CO2 and increased N deposition on ombrotrophic bog vegetation. Two experiments used peat monoliths with intact bog vegetation in containers, with one experiment outdoors and the other in a greenhouse. A third experiment involved monocultures and mixtures of Sphagnum magellanicum and Eriophorum angustifolium in containers in the same greenhouse. To determine water use of the bog vegetation in July–August for each experiment and each year we measured water inputs and outputs from the containers. We studied the effects of elevated CO2 and N supply on evapotranspiration in relation to vascular plant biomass and exposure of the moss surface (measured as height of the moss surface relative to the container edge). Elevated CO2 reduced water use of the bog vegetation in all three experiments, but the CO2 effect on evapotranspiration interacted with vascular plant biomass and exposure of the moss surface. Evapotranspiration in the outdoor experiment was largely determined by evaporation from the Sphagnum moss surface (as affected by exposure to wind) and less so by vascular plant transpiration. Nevertheless, elevated CO2 significantly reduced evapotranspiration by 9–10% in the outdoor experiment. Vascular plants reduced evapotranspiration in the outdoor experiment, but increased water use in the greenhouse experiments. The relation between vascular plant abundance and evapotranspiration appears to depend on wind conditions; suggesting that vascular plants reduce water losses mainly by reducing wind speed at the moss surface. Sphagnum growth is very sensitive to changes in water level; low water availability can have deleterious effects. As a consequence, reduced evapotranspiration in summer, whether caused by elevated CO2 or by small increases in vascular plant cover, is expected to favour Sphagnum growth in ombrotrophic bog vegetation.  相似文献   

18.
Biomass and nutrient allocation in sawgrass (Cladium jamaicense Crantz) and cattail (Typha domingensis Pers.) were examined along a nutrient gradient in the Florida Everglades in 1994. This north to south nutrient gradient, created by discharging nutrient-rich agricultural runoff into the northern region of Water Conservatio ea 2A, was represented by three areas (impacted, transitional and reference). Contrasting changes of plant density and size along the gradient were found for communities of both species. For the sawgrass community, more small plants were found in ref ce areas, whereas few large plants were found in impacted areas. In contrast, for the cattail community, bigger plants were found in reference areas, and smaller plants were found in impacted areas. Both species allocated approximately 60% of their total biomass to leaves and 40% to belowground tissues. However, sawgrass biomass allocation to leaves, roots, shoot bases and rhizomes (65%, 19%, 11%, and 5%, respectively) was similar among the three areas. In contrast, cattail plants growing in referen reas showed higher root allocation (27.3%), but lower leaf allocation (51.1%) than those growing in impacted areas (14.6% and 65.8% for root and leaf allocation, respectively). Cattail had higher phosphorus concentrations than sawgrass in tissues associated with growth functions (leaves, roots, and rhizomes). In contrast, sawgrass had higher phosphorus and nitrogen concentrations than cattail in tissues primarily associated with resource storage (shoot bases). From impacted to reference areas, for sawgrass, there was a decrease of leaf TP from 605 to 248 (mg/kg), root TP from 698 to 181 (mg/kg), rhizome TP from 1,139 to 142 (mg/kg), and shoot base TP from 5,412 to 400 to (mg/kg). For cattail, leaf TP decreased from 1,175 to 556 (mg/kg), root TP de sed from 1,100 to 798 (mg/kg), rhizome TP decreased from 1390 to 380 (mg/kg), and shoot base TP decreased from 2,990 to 433 (mg/kg). N/P ratios of sawgrass in reference areas were 27, 63, 38, and 50 for leaves, roots, rhizomes, and shoot bases, respectively, whereas in impacted areas they were 11, 21, 6, and 2, respectively. The greatest TP storage was found in impacted areas. Differences in seed output, seed number, and mean seed weight were found for both species as well. Each cattail flower stalk duced approximately 105 tiny seeds (0.048 ± 0.001 mg) while each sawgrass flower stalk produced about 103 large seeds (3.13 ± 0.005 mg). These results suggest that phosphorus is a limiting resource in the Everglades and that the two species have different life history strategies. These data provide an ecological basis for making informed management and planning decisions to protect and restore the Everglades.  相似文献   

19.
北京市近二十年景观破碎化格局的时空变化   总被引:12,自引:0,他引:12  
基于1993—2013年3期时间序列的遥感影像获得的一、二级景观类型的土地覆盖数据,利用移动窗口法和空间主成分分析法研究景观破碎度空间分布格局和破碎化过程。结果表明:北京市正处于快速城市化阶段,20年间其建设用地面积增加了1000.8 km~2,增长47.14%,而耕地面积减少21.86%;全市破碎化程度增加,其中,景观斑块总数增加了15.26%,而景观斑块的平均面积缩小了15.35%,景观形状指数(LSI)从88.426增加到98.897;北京市景观破碎化格局的空间异质性较大,但没有方向性偏好,却表现了"两极化"发展趋势,其中,高破碎化区域和低破碎化区域的面积增加,中等破碎化的区域面积减少,核心大城区和山区的景观破碎度降低,而新兴城区和郊区的景观破碎度增大;北京市景观破碎化格局的距离效应显著,呈现倒"U"型二次函数关系,其中,2013年的破碎度距离函数为:Y_3=0.1767+0.02898X_3-0.0005167X_3~2,距城市中心20—35 km处的城郊交错区景观破碎化程度最高。景观破碎化格局的分析有助于了解大城市快速发展阶段的景观格局演变规律,为城市生物多样性保护、绿地廊道维护和生态文明城市建设提供理论依据。  相似文献   

20.
Mäkelä  Kalervo  Tuominen  Liisa 《Hydrobiologia》2003,492(1-3):43-53
Chemical profiles of nutrients at the sediment–water interface were measured in the northern Baltic Sea. A whole core squeezer technique capable of mm-scale resolution was used to obtain the vertical profiles of NO3 , NO2 , o-P, NH4 + and Si in the soft bottom sediments. The profiles were compared with nutrient flux and denitrification measurements. In the Gulf of Finland, the profiles revealed a marked chemical zonation in NO3 and NO2 distribution indicating strong potential of nitrification just under the sediment surface followed by a layer of denitrification down to a depth of 30 mm. Below the depth of 20 mm NO3 was usually absent, whereas other nutrients were increasing steadily in concentration. A distinct minimum of NO3 was observed at the sediment–water interface, suggesting NO3 uptake by a microbial biofilm and/or active denitrification at the suboxic microniches usually present in organic-rich sediments. At the deep stations in the Baltic Proper, the NO3 concentration in pore water, as well as denitrification, were very low. The concentrations of NH4 +, o-P and Si were usually increasing steadily with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号