首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; β-glucosidase (EC 3.2.1.21) was the most variable component. Although its endoglucanase (EC 3.2.1.4) and exoglucanase (EC 3.2.1.91) activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of β-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.  相似文献   

2.
Chaetomium thermophile var.dissitum, isolated from an experimental urban refuse compost, had the following growth characteristics: Minimum temperature, 27±1°C; optimum, 45–50°C; maximum, 57±1°C; pH optimum 5.5–6.0.A number of carbohydrates could be used for growth, but cellulase formation measured with carboxymethylcellulose as substrate was initiated only on cellulose or xylan. With cellulose as the carbon source, cellulase accumulation in the culture filtrate followed closely that of growth, when the temperature was varied. pH optimum for the cellulase system was 5.0.The optimum temperature for cellulase activity with carboxymethylcellulose as substrate varied between 77°C with 1/2 h incubation time and 58°C with 10 h incubation time.With cotton as substrate, the optimum temperature was 58°C regardless of incubation time. Carboxymethylcellulose had a higher stabilizing effect on the enzyme than cotton. The temperature stability of the cellulase was highest at pH 6.0.  相似文献   

3.
Forty-eight thermophilic and thermotolerant species in addition to 5 varieties which belong to 24 genera were collected from desert soils in Saudi Arabia on glucose-(22 genera and 38 species + 5 varieties), cellulose-(15 genera and 27 species + 4 varieties) and 40% sucrose-Czapek's agar plates (13 genera and 26 species + 4 varieties) at 45 °C. The most frequent species were as follows: Aspergillus fumigatus, A. terreus, Humicola grisea var. thermoidae and Chaetomium thermophile var. copropile on glucose-; A. fumigatus, C. thermophile var. copropile, A. terreus, A. nidulans and C. thermophile var. dissitum on cellulose-; and A. fumigatus and A. terreus on 40% sucrose-Czapek's agar plates. Sixteen species and 4 varieties were particularly thermophilic and these were A. fumigatus, H. grisea var. thermoidae, H. insolens, H. lanuginosa, C. thermophile var. copropile, C. thermophile var. dissitum, C. virginicum, M. pusillus, S. thermophila, S.? pulverulentum, T. thermophilus, T.? emersoni, T. aurantiacus, T. thermophila, M. pulchella var. sulfurea, M. albomyces, ?A. terrestris, C. pruinosum, T. thermophila and P. thermophila. The remaining species showed different degrees of thermotolerant (32 species + 1 variety).  相似文献   

4.
Cooling air requirements in solid-state cultures of filamentous fungi were studied. The growth conditions of Trichonderma viride TS, Thermoascus aurantiacus and Sporotrichum (Chrysosporium) thermophile in sugar-beet pulp medium were estimated. Heat generation and heat removal in relation to water activity of the medium are discussed. Heat removal from the culture media was due to enthalpy changes and water vapourization. Changes in the water sorption properties in the solid media during the fermentation process are presented. It was estimated that in real solid-state conditions the requirement for cooling air in a mesophilic culture is 2-fold higher than that under thermophilic conditions.  相似文献   

5.
Sporotrichum thermophile Apinis, was the most active carboxymethyl-cellulose (CMC)-ase producer among seven thermophilic and four thermotolerant fungal species isolated from Egyptian soil and screened for their ability to produce extracellular cellulase in culture media containing CMC as a sole carbon source. The fungus also efficiently hydrolysed filter paper cellulose. Comparison of various untreated and alkali-treated cellulosic and lignocellulosic materials as substrates for cellulase production by S. thermophile revealed the most easily degraded substrate was sugarcane bagasse at 2% concentration. This substrate when alkali treated was the most susceptible to enzymic hydrolysis by culture filtrates of S. thermophile grown on untreated bagasse. Optimum hydrolysis was obtained after 18 h incubation with the filtrate at pH 3·5–4 and 45°C. Alkali treatment of bagasse reduced its lignin content significantly and the culture filtrate of S. thermophile grown on untreated bagasse was found to contain xylanase and polygalacturonase in addition to cellulase and cellobiase.  相似文献   

6.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   

7.
A novel marine ice-nucleating bacterium, KUIN-5, was isolated from a marine algae, Monostroma latissum. Strain KUIN-5 was identified as a Pseudomonas sp. from its characteristics and taxonomies; the optimum temperature and pH for its growth were 25°C and 6.0, respectively. When strain KUIN-5 was aerobically cultured in Carlucci-Pramer medium (pH 6.0) for 50 h at 25°C, the highest ice-nucleating activity of the cells among the media for marine bacteria was obtained, and the ice-nucleating temperature, T50, was indicated to be ? 3.2°C. Also, the optimum concentration of NaCl for the growth in this medium, which was prepared with distilled water instead of seawater, was 2.0% (w/v) and then the ice-nucleating activity was inversely proportional to the NaCl concentration. Moreover, when strain KUIN-5 was cultured in Davis medium under optimum conditions, it produced insoluble polysaccharide (IPS) in the culture. The maximum amount of IPS production by strain KUIN-5 was 84.5 mg/ml of medium under optimum conditions. Therefore, this IPS was isolated and could be identified as cellulose, based on TLC or HPLC of the acid hydrolysate, and GC-MS of the acetylated polyalcohol prepared by periodate oxidation and Smith degradation of this polysaccharide. This is the first report of cellulose production by a marine ice-nucleating bacterium.  相似文献   

8.
Summary Six thermophilic fungi were examined for their ability to produce cellulolytic enzymes in liquid (LF) and solid-state fermentation (SSF). The best cellulase activities were achieved by Thermoascus aurantiacus and Sporotrichum thermophile. Taking into consideration that solid-state medium obtained from 100 g of dry sugar-beet pulp occupies about 11 of fermentor volume equivalent to 11 of LF, it was confirmed that enzyme productivity per unit volume from both fungi was greater in SSF than in LF. The cellulase system obtained by SSF with T. aurantiacus contained 1.322 IU/1 of exo--d-glucanase, 53.269 IU/1 of endo--d-glucanase and 8.974 IU/1 of -d-glucosidase. The thermal and pH characteristics of cellulases from solid-state fermentation of T. aurantiacus and S. thermophile are described.  相似文献   

9.
As an effort to find suitable endoglucanases to generate cellulolytic yeast strains, two fungal endoglucanases, Thermoascus aurantiacus EGI and Trichoderma reesei EGII, and two bacterial endoglucanases, Clostridium thermocellum CelA and CelD, were expressed on the yeast surface, and their surface expression levels, pH- and temperature-dependent enzyme activities, and substrate specificities were analyzed. T. aurantiacus EGI showed similar patterns of pH- and temperature-dependent activities to those of T. reesei EGII which has been widely used due to its high enzyme activity. Although EGII showed higher carboxymethyl cellulose (CMC) degradation activity than EGI, EGI showed better activity toward phosphoric acid swollen cellulose (PASC). For ethanol production from PASC, we combined three types of yeast cells, each displaying T. aurantiacus EGI, T. reesei CBHII (exoglucanase) and Aspergillus aculeatus BGLI (β-glucosidase), instead of co-expressing these enzymes in a single cell. In this system, ethanol production can be easily optimized by adjusting the combination ratio of each cell type. A mixture of cells with the optimized EGI:CBHII:BGLI ratio of 6:2:1 produced 1.3 fold more ethanol (2.1 g/l) than cells composed of an equal amount of each cell type, suggesting the usefulness of this system for cellulosic ethanol production.  相似文献   

10.
In this study, a simple, inexpensive and fast β-glucosidase immobilization system was constructed and evaluated in isoflavone glycosides hydrolysis. A β-glucosidase gene from Thermoascus aurantiacus IFO9748 was recombinantly expressed in Pichia pastoris KM71H and immobilized on regenerated amorphous cellulose (RAC) by fused cellulose binding module 3. Through simple mixing cellulose and crude enzyme for 15 min under room temperature, 96.04% β-glucosidase was immobilized onto RAC. The optimum temperature for β-glucosidase activity was increased by 5ºC after immobilization. The half-life (t½) of heat inactivation of immobilized enzyme at 60oC was improved over 8 folds. After 30 rounds recycled at 40oC, 96.9% daidzin and 98.9% genistin could still be hydrolyzed. A continuous hydrolysis system was also constructed, and at the flow rate of 0.2 mL/min after 30 h hydrolysis, 95.6% genistin and 90.2% daidzin can still be hydrolyzed. Combined the simple and high efficient enzyme immobilization procedure and inexpensive cellulose, this scalable and practical system may have broad prospects for industrial utilization.  相似文献   

11.
Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 41.3 ~ 46.5% (w/w) of cellulose. This research examined the production of cellulase by the E. coli EgRK2 recombinant strain using an OPEFB substrate. The production of the enzyme was initially examined to identify optimum growth conditions, by observing the growth and activity of E. coli EgRK2 compared to its wild type. Our results showed that the optimum production time, pH and temperature of the recombinant growth and cellulase activity were achieved at 24 h, and at 7 and 40°C, respectively. Using these optimum conditions, the enzyme was produced, and experiments were carried out to examine the enzyme characteristics, produced from both strains, on hydrolysis of cellulose from OPEFB. Our results showed that the activity of the enzyme produced by the recombinant almost doubled compared to that of the wild type, although the optimum pH for both strains was pH 6. Higher activity was achieved by the recombinant compared to the wild type strain, and values were 1.905 and 1.366 U/mL, respectively. The optimum temperature for hydrolysis by cellulase occurred at 50°C for Bacillus sp. RK2, and 60°C for Bacillus sp. EgRK2. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) for OPEFB degradation by E. coli EgRK2 were 0.26% and 1.750 μmol/mL/sec, which were significantly better values than those of the wild type. Control experiments for the degradation test using CMC also showed a better Vmax value for E. coli EgRK2 compared to the wild type, which is 2.543 and 1.605 μmol/mL/sec, respectively.  相似文献   

12.
Two filamentous cyanobacteria of the genera Scytonema and Tolypothrix were reported to be effective for stabilizing soil in arid areas due to the production of significant amounts of extracellular polysaccharides (EPS). These EPS may also have applications in the biotechnology industry. Therefore, two cyanobacterial species, Scytonema tolypothrichoides and Tolypothrix bouteillei were examined using crossed gradients of temperature (8–40°C) and irradiance (3–21 W m?2) to identify their temperature and irradiance optima for maximum biomass and EPS production. According to their reported temperature requirements, both strains were considered mesophilic. The optimum growth range of temperature in S. tolypothrichoides (27 to 34°C) was higher than T. bouteillei (22–32°C). The optimum irradiance range for growth of S. tolypothrichoides (9–13 W m?2) was slightly lower than T. bouteillei (7–18 W m?2). Maximum EPS production by S. tolypothrichoides occurred at similar temperatures (28–34°C) as T. bouteillei (27–34°C), both slightly higher than for maximum growth. The optimum irradiance range for EPS production was comparable to that for growth in S. tolypotrichoides (8–13 W m?2), and slightly lower in T. bouteillei (7–17 W m?2). The Redundancy Analysis confirmed that temperature was the most important controlling factor and protocols for field applications or for mass cultivation can now be developed.  相似文献   

13.
Pleurotus pulmonarius F043, a fungus collected from tropical rain forest, was used to degrade pyrene, a four-rings polycyclic aromatic hydrocarbons (PAHs), in a mineral medium broth. A maximum degradation rate of pyrene (90 %) was occurred at pH 3 and the lowest degradation rate was found in the culture at pH 10 (2 %). More than 90 % pyrene degradation was achieved at pH ranged from 3 to 5, whereas the degradation rate significantly declined when the pH was >5. The degradation of pyrene increased from 2 to 96 % when the temperature rose from 4 to 25 °C. When the temperature was increased to 60 °C resulting the lowest degradation rate into 7 %. Among the agitation rates tested, 120 rpm was the best with 95 % degradation, followed by 100 rpm (90 %). The optimum agitation range for pyrene degradation by P. pulmonarius F043 was 100–120 rpm. Among all the concentrations tested, 0.5 % Tween 80 was the best with 98 % degradation, followed by 1 % Tween 80 (90 %). The optimum concentration of Tween 80 for pyrene degradation by P. pulmonarius F043 was 0.5–1 %. The degradation rate decreased, while the concentration of Tween 80 was increased. The metabolic product was found during degradation process through the identification of gentisic acid by TLC, UV-Spectrophotometer, and GC–MS.  相似文献   

14.
Statistical designs were used to optimize some parameters affecting the growth rate of a Brazilian strain ofThermoascus aurantiacus. The mycelial growth rate was measured using the horizontal tube method. Temperature of incubation and initial pH were the major factors affecting the growth rate. They were optimal at 6.0 and 48°C, respectively. The maximum growth rate was obtained in solid Czapek modified medium containing 1.5% glucose and 38.4 mEq L–1NaNO3. Under these conditions, the growth rate ofT. aurantiacus was 5.16±0.10 mm h–1. Lignin-related compounds such as tannins and extractive substances added at 0.1% (w/v) to the minimal Czapek medium increased growth rate 14% and 29%, respectively.  相似文献   

15.
The optimum temperature of protein synthesis in wheat seedlings (Triticum aestivum L.), measured as 14C-leucine incorporation, depends on the growing temperature. Plants grown at reduced temperature (4 C) reach their optimum at 27.5 C, whereas plants kept at 36 C have the highest rate of protein synthesis at 35 C. The transition is gradual. The activation energy of protein synthesis for seedlings grown at medium or reduced temperature is lower (about 11 kcal/mole), than for plants grown at higher temperatures (15 keal/mole). The decline of the rate of protein synthesis beyond the temperature optimum is also affected by the growth temperature; only plants kept at 30 or 36 C show a sharp decrease with increasing slope; plants kept at 4, 10, and 20 C exhibit a linear and comparatively moderate decline.  相似文献   

16.
The nutrient requirements of the cellulolytic anaerobe Bacteroides cellulosolvens were determined, and a new synthetic medium was formulated for its growth. B. cellulosolvens showed optimum cellobiose consumption and product formation in medium containing 40 mM ammonia nitrogen, 3 mM phosphate, 1 mM sulfide, 100 μM magnesium and 45 μM iron. This microbe had an essential-vitamin requirement for biotin; while zinc, manganese and copper slightly stimulated cellobiose degradation. In the new synthetic medium B. cellulosolvens was able to degrade 30% more cellulose.  相似文献   

17.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

18.
Termitomyces clypeatus produces cellobiose dehydrogenase (CDHtc) in cellulose medium with the highest yield (55.88 U mL−1) among all the reported fungal species. The enzyme has been isolated and purified from the culture filtrate.

CDHtc was found to be a very thermolabile enzyme with the temperature optimum at 30 °C, while it exhibited a wide range of pH stability from pH 2.0 to 8.0. Lactose was efficiently converted to lactobionic acid in presence of the enzyme. Addition of glucose in the cellulose medium on the first day of growth induced a lag period in enzyme production but ultimately facilitated earlier CDHtc production and the yield was also comparable to that achieved in the cellulose medium.  相似文献   


19.
A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50°C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 109 cells per ml) at 50°C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (107 cells per ml) for 6 days at 50°C. These data indicate a potential biotechnique for degradation and utilization of feather keratin.  相似文献   

20.
The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号