首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

2.
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD.  相似文献   

3.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

4.
β-amyloid (Aβ) is the main constituent of senile plaques seen in Alzheimer's disease. Aβ is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases β- and β-secretase. In this study, we examined content and localization of β-secretase-cleaved APP (β-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular β-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. β-sAPP was found to be localized in astrocytes and in axons. We found the β-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal β-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. β-sAPP was also found surrounding senile plaques and cerebral blood vessels. The results presented here show altered β-sAPP staining in the AD brain, suggestive of abnormal processing and transport of APP.  相似文献   

5.
Abstract: We have previously shown that a recombinant carboxyl-terminal 105-amino-acid fragment (CT105) of the amyloid precursor protein (APP) induced strong non-selective inward currents in Xenopus oocytes. Here we investigated the toxic effect of CT105 peptide on the cultured mammalian cells. The CT105 peptide induced a significant lactate dehydrogenase (LDH) release from cultured rat cortical neurons and PC12 cells in a concentration (from 10 µ M )- and time (from 48 h)-dependent manner. The toxic effect of CT105 was more potent than that of any fragments of amyloid β protein (Aβ). However, CT105 peptide did not affect the viability of U251 human glioblastoma cells. In contrast to CT105, Aβ increased LDH release only slightly even at 50 µ M but significantly inhibited 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction at submicromolar concentrations. Among the various neuroprotective drugs tested, only cholesterol, which alters membrane fluidity, could attenuate the cytotoxicity of CT105 significantly. The CT105 peptide formed multiple self-aggregates on solubilization. Pretreatment with a sublethal concentration of CT105 did not significantly alter the susceptibility of cells to hydrogen peroxide and glutamate. Endogenous CT peptides were found not only in the cell lysates but also in the conditioned medium of PC12 cells. These results imply that CT peptide can directly attack the cell membrane probably by making pores or nonselective ion channels, whereas Aβ impairs the intracellular metabolic pathway first. Thus, it is thought that both CT and Aβ, which are formed during the processing of APP, may participate in the neuronal degeneration in Alzheimer's disease by different mechanisms.  相似文献   

6.
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed.  相似文献   

7.
Abstract: The cerebral deposition of amyloid β-peptide (Aβ) is a histopathological characteristic of Alzheimer's disease. Because an impaired clearance of Aβ might be involved in the disease, we investigated the proteolytic degradation of synthetic Aβ (40-residue peptide) in cultures of glial cells and characterized a protease involved. Whereas rat astrocytes had a very low degradation capacity, cultivated rat microglia cells cleaved Aβ. Microglia activity was considerably enhanced by stimulation with lipopolysaccharide and to a lesser extent by phorbol esters. Most of the Aβ-degrading activity was released into the medium. By use of selective inhibitors the protease was characterized as a metalloprotease of ∼200 kDa that was different from neutral endopeptidase (a neuropeptide-degrading enzyme), matrix metalloproteases, or macrophage elastase. Its activity was efficiently reduced by four hydroxamic acid-based zinc-metalloprotease inhibitors that have been shown to inhibit membrane protein secretases (disintegrins). We conclude that activated microglia cells might impair amyloid plaque formation by release of a metalloprotease that degrades soluble Aβ before polymerization.  相似文献   

8.
Abstract: The amyloid β peptide (Aβ) of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APPs), which are considered type I transmembrane proteins. Here we report that the soluble fraction of isolated adrenal medullary chromaffin granules (CG), a model neuronal secretory vesicle system, contains an antigen that immunochemically and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from full-length APP. A truncated APP fragment with intact Aβ sequence was also detected in the soluble fraction of CG. In vitro experiments showed that full-length APP was solubilized from CG membranes at 37°C as a function of pH, with a peak of activity between pH 8.5 and pH 9.0. Solubilization of full-length APP was inhibited by several protease inhibitors, including aprotinin, cystatin, and iodoacetamide, by the divalent cations Ca2+ and Zn2+, and by preheating of the membranes. These results are consistent with and suggest the involvement of an enzymatic mechanism in the solubilization of potentially amyloidogenic full-length APP. Production of Aβ from a transmembrane APP predicts a proteolytic cleavage within the lipid bilayer, a site relatively inaccessible to proteases. Thus, the detected soluble, potentially amyloidogenic, full-length APP may be a substrate for the proteases producing Aβ. The detection of soluble APP with intact Aβ sequence in secretory vesicles is consistent with the extracellular topology of amyloid depositions.  相似文献   

9.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

10.
Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKCα and PKCε isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-β (Aβ) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKCα down-regulation; (ii) PKCε up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted Aβ. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered Aβ generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased Aβ generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity.  相似文献   

11.
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells.  相似文献   

12.
Abstract: Activation of protein kinase C (PKC) regulates the processing of Alzheimer amyloid precursor protein (APP) into its soluble form (sAPP) and amyloid β-peptide (Aβ). However, little is known about the intermediate steps between PKC activation and modulation of APP metabolism. Using a specific inhibitor of mitogen-activated protein (MAP) kinase kinase activation (PD 98059), as well as a dominant negative mutant of MAP kinase kinase, we show in various cell lines that stimulation of PKC by phorbol ester rapidly induces sAPP secretion through a mechanism involving activation of the MAP kinase cascade. In PC12-M1 cells, activation of MAP kinase by nerve growth factor was associated with stimulation of sAPP release. Conversely, M1 muscarinic receptor stimulation, which is known to act in part through a PKC-independent pathway, increased sAPP secretion mainly through a MAP kinase-independent pathway. Aβ secretion and its regulation by PKC were not affected by PD 98059, supporting the concept of distinct secretory pathways for Aβ and sAPP formation.  相似文献   

13.
Abstract: It has been previously reported that Alzheimer's amyloid β protein (Aβ) induces reactive astrocytosis in culture. In the present study, we found that Aβ potently inhibits cellular redox activity of cultured astrocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The following comparative studies revealed several differences between these two actions of Aβ on astrocytes. First, Aβ-induced reactive morphological change was suppressed by the presence of serum or thrombin, and Aβ inhibition of cellular redox activity was observed in either the presence or the absence of serum. Second, micromolar concentrations (10 µ M or more) were required for Aβ to induce reactive astrocytosis, whereas nanomolar concentrations (0.1–100 n M ) were sufficient to inhibit cellular redox activity. Third, the effect of micromolar Aβ was virtually irreversible, but nanomolar Aβ-induced inhibition of cellular redox activity was reversed by washing out Aβ. Furthermore, as it has been reported that Aβ neurotoxicity is mediated by reactive oxygen species, we also examined if similar mechanisms are involved in astrocytic response to Aβ. However, neither Aβ-induced morphological change nor inhibition of redox activity was blocked by antioxidants, suggesting that these effects are not caused by oxidative stress.  相似文献   

14.
The metabolism of amyloid β-protein precursor (APP) is regulated by various cytoplasmic and/or membrane-associated proteins, some of which are involved in the regulation of intracellular membrane trafficking. We found that a protein containing Asp–His–His–Cys (DHHC) domain, alcadein and APP interacting DHHC protein (AID)/DHHC-12, strongly inhibited APP metabolism, including amyloid β-protein (Aβ) generation. In cells expressing AID/DHHC-12, APP was tethered in the Golgi, and APP-containing vesicles disappeared from the cytoplasm. Although DHHC domain-containing proteins are involved in protein palmitoylation, a AID/DHHC-12 mutant of which the enzyme activity was impaired by replacing the DHHC sequence with Ala–Ala–His–Ser (AAHS) made no detectable difference in the generation and trafficking of APP-containing vesicles in the cytoplasm or the metabolism of APP. Furthermore, the mutant AID/DHHC-12 significantly increased non-amyloidogenic α-cleavage of APP along with activation of a disintegrin and metalloproteinase 17, a major α-secretase, suggesting that protein palmitoylation involved in the regulation of α-secretase activity. AID/DHHC-12 can modify APP metabolism, including Aβ generation in multiple ways by regulating the generation and/or trafficking of APP-containing vesicles from the Golgi and their entry into the late secretary pathway in an enzymatic activity-independent manner, and the α-cleavage of APP in the enzymatic activity-dependent manner.  相似文献   

15.
The ultrastructural localization of amyloidβ/ A4 protein precursor (APP) was studied immunohistochemically in normal rat brains using antibodies against different portions of APP. In cerebral cortical neurons and Purkinje cells, APP reaction products were located in the cytoplasm and on cell surface membranes. Some Golgi apparatuses and rough endoplasmic reticulum also showed APP immunoreactivity on their membranes and some vesicles near the trans face of the Golgi apparatuses were stained. In the neuropil of the cerebral cortex and the cerebellar molecular layer, many cell processes, which surrounded synapses and were considered to be astrocytic, were APP-positive. Foot processes around capillaries and subpial astrocytic processes were also immuno-positive. At the ultrastructural level, APP-positive astrocytic processes were identified.  相似文献   

16.
A wide interest in amyloid precursor protein (APP) metabolism stems from the fact that increased amounts of amyloid beta peptide (Abeta), arising through proteolytic processing of APP, likely play a significant role in Alzheimer's disease. As Alzheimer's disease pathology is limited almost exclusively to the human species, we established human primary neuron cultures to address the possibility of distinctive APP processing in human CNS neurons. In the present study, we investigate the role of organelles and protein trafficking in APP metabolism. Using brefeldin A, we failed to detect APP processing into Abeta in the endoplasmic reticulum. Monensin and the lysomotropic agents, NH4Cl and chloroquine, revealed a bypass pH-dependent secretory pathway in a compartment between the endoplasmic reticulum and the medial Golgi, resulting in the secretion of full-length APP. Colchicine treatment resulting in the loss of neurites inhibited processing of APP through the secretory, but not the endosomal-lysosomal, pathway of APP metabolism. The serine protease inhibitor, leupeptin, indicates a role for lysosomes in APP, Abeta, and APP C-terminal fragment turnover. These results demonstrate that the regulation of APP metabolism in human neurons differs considerably from those reported in rodent CNS primary neuron cultures or continuously dividing cell types.  相似文献   

17.
Effect of Ischemic Neuronal Insults on Amyloid Precursor Protein Processing   总被引:3,自引:0,他引:3  
The nature of the association between ischemic stroke and Alzheimer’s disease (AD) at the cellular and molecular level is still unknown. We evaluated the effect of ischemic neuronal insults on the regulation of amyloid precursor protein (APP) processing. We used an in vitro model of cerebral ischemia (oxygen-glucose deprivation) to evaluate the effect of ischemic neuronal insults on the amyloidogenic and non-amyloidogenic pathways using human neuroblastoma cell line and primary cultured cells of transgenic mice which expressed human APP (Tg2576). Ischemic neuronal insults increased the production of Aβ in Tg2576 primary culture cells compared to controls. A disintegrin and metalloprotease 10 (ADAM 10) was markedly increased in early stage of ischemic insults, which was followed by decreased level of ADAM 10 expression in later stage. The protein and mRNA expression of β-site cleavage enzyme (BACE) and BACE activity was not significantly different between the group of ischemic insults and control. By contrast, the activity of γ-secretase was significantly increased after 4 h of ischemic insults, as compared to controls. The present study showed that the ischemic neuronal insults increased the production of Aβ by influencing APP metabolism, which may link the role of ischemic insults to the pathogenesis of AD.  相似文献   

18.
Abstract: Alzheimer's disease (AD) is identified by the accumulation of amyloid plaques, neurofibrillary degeneration, and the accompanying neuronal loss. AD amyloid assembles into compact fibrous deposits from the amyloid β(Aβ) protein, which is a proteo-lytic fragment of the membrane-associated amyloid precursor protein. To examine the effects of amyloid on neuron growth, a hybrid mouse motoneuron cell line (NSC34) exhibiting spontaneous process formation was exposed to artificial "plaques" created from aggregated synthetic Aβ peptides. These correspond to full-length Aβ residues 1–40 (Aβ1–40), an internal β-sheet region comprising residues 11–28 (Aβ11–28), and a proposed toxic fragment comprising residues 25–35 (Aβ25–35). Fibers were immobilized onto culture dishes, and addition of cells to these in vitro plaques revealed that Aβ was not a permissive substrate for cell adhesion. Neurites in close contact with these deposits displayed abnormal swelling and a tendency to avoid contact with the Aβ fibers. In contrast, Aβ did not affect the adhesion or growth of rat astrocytes, implicating a specific Aβ-neuron relationship. The inhibitory effects were also unique to Aβ as no response was observed to deposits of pancreatic islet amyloid poly-peptide fibers. Considering the importance of cell adhesion in neurite elongation and axonal guidance, the antiadhesive properties of Aβ amyloid plaques found in vivo may contribute to the neuronal loss responsible for the clinical manifestations of AD.  相似文献   

19.
Abstract: Recent studies have identified the Alzheimer's disease amyloid β/A4 protein precursor (APP) as a trophic and/or tropic protein on several types of cells, including fibroblasts, primary culture neurons, PC12 cells, and B103 neuron-like cells. Many trophic proteins bind heparin, and it is believed that the heparin-binding domain is crucial for the trophic activity of these proteins. APP also binds heparin. The current studies were undertaken to examine the hypothesis that the neuritotropic activity of APP requires heparin binding. It was found that APP produced in E. coli bound B103 cells through detergent-extractable molecules. Approximately 50% of the binding sites were heparinase-sensitive, and heparin and heparan sulfate competed for APP binding to these sites. The heparinase-insensitive sites were recognized by a stretch of 17 amino acids of APP (residues 319–335) that contains the neuritotropic activity of APP. A mutant APP with a deletion at this site was capable of binding to the heparinase-sensitive sites, although this molecule was not neuritotropic to B103 neuron-like cells. Therefore, the neuritotropic site and the heparin-binding site are distinct in APP, and the neuritotropic effect of APP is produced through its binding to detergent-extractable and heparinase-insensitive sites.  相似文献   

20.
Abstract: Culture of rat embryonic hippocampal neurons in serum-free B27/Neurobasal for 4 days enabled tests of the effect of added thrombin on differentiated cell morphology and processing of the amyloid precursor protein (APP). By fluorescence microscopy of neurons labeled with dil and by scanning electron microscopy, an increase in spreading of the neuron soma was clearly seen in cells treated with 1 µg/ml (27 n M ) of thrombin for 24 h. This treatment also caused a dose-dependent increase in immunoreactive area/cell, detected with antibody 4G8 binding to the β-amyloid region of APP. Thrombin treatment also produced a dose-dependent increase in immunoreactive brightness detected with the Alz-50 antibody. Thrombin did not affect viability or cause neurite retraction. The thrombin effect on 4G8 immunoreactivity required 24 h for full effect and could be blocked by the thrombin inhibitor antithrombin III or hirudin. A thrombin receptor appeared to be activated because a full immunoreactive response was observed by treatment of neurons with the thrombin receptor-activating peptide SFLLRNPNNKYEPF. When cytoplasmic extracts were analyzed by western immunoblots or by pulse-chase radiolabeling, no thrombin-dependent changes in processing of 127- and 120-kDa bands were seen. Material migrating in the region of synthetic βA4 was not found. Together, these results suggest that thrombin acts on neurons through a thrombin receptor to stimulate cell spreading and redistribution of APP without amyloidogenic changes. The adhesion responsible for this spreading could be important in altering synaptic connections in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号