首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
White spot syndrome virus (WSSV) is one of the most serious pathogens of penaeid shrimp. Although its genome has been completely characterized, the functions of most of its putative proteins are not yet known. It has been suggested that the major nucleocapsid protein VP15 is involved in packaging of the WSSV genome during virion formation. However, little is known in its relationship with shrimp host cells. Using the yeast two-hybrid approach to screen a shrimp lymphoid organ (LO) cDNA library for proteins that might interact with VP15, a protein named PmFKBP46 was identified. It had high sequence similarity to a 46 kDa-immunophilin called FKBP46 from the lepidopteran Spodoptera frugiperda (the fall armyworm). The full length PmFKBP46 consisted of a 1,257-nucleotide open reading frame with a deduced amino acid sequence of 418 residues containing a putative FKBP-PPIase domain in the C-terminal region. Results from a GST pull-down assay and histological co-localization revealed that VP15 physically interacted with PmFKBP46 and that both proteins shared the same subcellular location in the nucleus. An electrophoretic mobility shift assay indicated that PmFKBP46 possessed DNA-binding activity and functionally co-interacted with VP15 in DNA binding. The overall results suggested that host PmFKBP46 might be involved in genome packaging by viral VP15 during virion assembly.  相似文献   

2.
The protein components of the white spot syndrome virus (WSSV) virion have been well established by proteomic methods, and at least 39 structural proteins are currently known. However, several details of the virus structure and assembly remain controversial, including the role of one of the major structural proteins, VP26. In this study, Triton X-100 was used in combination with various concentrations of NaCl to separate intact WSSV virions into distinct fractions such that each fraction contained envelope and tegument proteins, tegument and nucleocapsid proteins, or nucleocapsid proteins only. From the protein profiles and Western blotting results, VP26, VP36A, VP39A, and VP95 were all identified as tegument proteins distinct from the envelope proteins (VP19, VP28, VP31, VP36B, VP38A, VP51B, VP53A) and nucleocapsid proteins (VP664, VP51C, VP60B, VP15). We also found that VP15 dissociated from the nucleocapsid at high salt concentrations, even though DNA was still present. These results were confirmed by CsCl isopycnic centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry, by a trypsin sensitivity assay, and by an immunogold assay. Finally, we propose an assembly process for the WSSV virion.  相似文献   

3.
White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.  相似文献   

4.
Tang X  Wu J  Sivaraman J  Hew CL 《Journal of virology》2007,81(12):6709-6717
White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 A, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt beta-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core beta-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.  相似文献   

5.
Xie X  Xu L  Yang F 《Journal of virology》2006,80(21):10615-10623
White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis.  相似文献   

6.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.  相似文献   

7.
White spot syndrome virus (WSSV) is at present one of the major pathogens in shrimp culture worldwide. The complete genome of this virus has been sequenced recently. To identify the structural and functional proteins of WSSV, the purified virions were separated by SDS-PAGE. Twenty-four protein bands were excised, in-gel digested with trypsin, and subjected to matrix-assisted laser desorption ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry, respectively. Eighteen proteins matching the open reading frames of WSSV genome were identified. Except for three known structural proteins and collagen, the functions of the remaining 14 proteins were unknown. Temporal analysis revealed that all the genes were transcribed in the late stage of WSSV infection except for vp121. Of the newly identified proteins, VP466 (derived from band 16) was further characterized. The cDNA encoding VP466 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Specific antibody was generated with the purified GST-VP466 fusion protein. Western blot showed that the mouse anti-GST-VP466 antibody bound specifically to a 51-kDa protein of WSSV. Immunogold labeling revealed that VP466 protein is a component of the viral envelope. Results in this investigation thus proved the effectiveness of proteomic approaches for discovering new proteins of WSSV.  相似文献   

8.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21. After induction, the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production. It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection. Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay. Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.  相似文献   

9.
10.
In Korea, mass mortality occurred among cultured shrimp with visible macroscopic white spots in 2000, and we confirmed the presence of white spot syndrome virus (WSSV) in the tissues of moribund shrimp by electron microscopy. In order to identify the characteristics of this Korean isolate of WSSV, we cloned and characterized its genomic DNA coding for VP24, VP26, and VP28. On the nucleotide level, VP24, VP26, and VP28 of the Korean isolate were found to be 100%, 100%, and 99% identical to those of Taiwan, Thailand and Chinese isolates, respectively. On the deduced amino-acid level, all 3 virion proteins showed 100% identity to those of the foreign isolates. The extent of sequence identity suggests that the Korean isolate originated from the same ancestor as the Taiwanese, Thai and Chinese isolates.  相似文献   

11.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

12.
Wan Q  Xu L  Yang F 《Journal of virology》2008,82(24):12598-12601
The envelopment of the nucleocapsid is an important step in white spot syndrome virus (WSSV) assembly. Previous studies showed that VP26, a major envelope protein of WSSV, can interact with viral nucleocapsid. In this study, using the biotin label transfer technique, we found that the biotin label was transferred from Bio-rVP26 to the viral capsid protein VP51 or from Bio-MBP-VP51 to VP26. Far-Western analyses provided further evidence for direct interaction between VP26 and VP51. Therefore, we conclude that VP26 functions as a matrix-like linker protein between the viral envelope and nucleocapsid, which suggests that VP26 is a key factor in the envelopment of WSSV virion.  相似文献   

13.
14.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

15.
White spot syndrome virus (WSSV) is a major pathogen that causes severe mortality and economic losses to shrimp cultivation worldwide. The genome of WSSV contains a 305-kb double-stranded circular DNA, which encodes 181 predicted ORFs. Previous gel-based proteomics studies on WSSV have identified 38 structural proteins. In this study, we applied shotgun proteomics using off-line coupling of an LC system with MALDI-TOF/TOF MS/MS as a complementary and comprehensive approach to investigate the WSSV proteome. This approach led to the identification of 45 viral proteins; 13 of them are reported for the first time. Seven viral proteins were found to have acetylated N termini. RT-PCR confirmed the mRNA expression of these 13 newly identified viral proteins. Furthermore iTRAQ (isobaric tags for relative and absolute quantification), a quantitative proteomics strategy, was used to distinguish envelope proteins and nucleocapsid proteins of WSSV. Based on iTRAQ ratios, we successfully identified 23 envelope proteins and six nucleocapsid proteins. Our results validated 15 structural proteins with previously known localization in the virion. Furthermore the localization of an additional 12 envelope proteins and two nucleocapsid proteins was determined. We demonstrated that iTRAQ is an effective approach for high throughput viral protein localization determination. Altogether WSSV is assembled by at least 58 structural proteins, including 13 proteins newly identified by shotgun proteomics and one identified by iTRAQ. The localization of 42 structural proteins was determined; 33 are envelope proteins, and nine are nucleocapsid proteins. A comprehensive identification of WSSV structural proteins and their localization should facilitate the studies of its assembly and mechanism of infection.  相似文献   

16.
Widespread evidence indicates that the structural proteins of virus play very important roles in virus-host interactions. However, the effect of viral proteins on host immunity has not been addressed. Our previous studies revealed that the host shrimp Rab6 (termed as PjRab previously), tropomyosin, β-actin and the white spot syndrome virus (WSSV) envelope protein VP466 formed a complex. In this study, the VP466 protein was shown to be able to bind host Rab6 protein and increase its GTPase activity in vivo and vitro. Thus, VP466 could function as a GTPase-activating protein (GAP) of Rab6. In the VP466-Rab-actin pathway, the increase of the Rab6 activity induced rearrangements of the actin cytoskeleton, resulting in the formation of actin stress fibers which promoted the phagocytosis against virus. Therefore our findings revealed that a viral protein could be employed by host to initiate the host immunity, representing a novel molecular mechanism in the virus-host interaction. Our study would help to better understand the molecular events in immune response against virus infection in invertebrates.  相似文献   

17.
【目的】研究对虾白斑综合征病毒(White spot syndrome virus,WSSV)囊膜蛋白sVP53B克隆、表达、纯化及抗血清制备。【方法】根据WSSV囊膜蛋白基因序列,设计引物,PCR扩增出功能序列(Svp53B),构建到pET-16b载体后,转化至大肠杆菌Rosetta 2诱导表达,用SDS-PAGE、Western blotting检测优化表达。表达产物采用Ni-NTA琼脂糖磁珠进行纯化、割胶回收融合蛋白,以纯化的Svp53B-his为抗原,免疫兔子获得多克隆抗体,通过间接ELISA检测抗体的效价。【结果】构建重组质粒pET-16b-Svp53B,在大肠杆菌Rosetta 2中以1 mmol/L IPTG诱导表达量最高,主要以包涵体形式表达。纯化包涵体蛋白免疫兔子,获得多克隆血清,效价达到1:150 000。【结论】原核表达并纯化得到高纯度的WSSV囊膜蛋白sVP53B,制备的兔源多克隆血清亲和力高、特异性好,这对后期进一步研究VP53B与经口侵染相关功能奠定了基础。  相似文献   

18.
We isolated and characterized the profilin (FcPFN) cDNA from hemocytes ofFenneropenaeus chinensis, a unique shrimp species from the Yellow Sea. The FcPFN cDNA consists of 830 bp and encodes a polypeptide of 125 amino acids, having a predicted isoelectric point of 5.06. The deduced amino acid sequence of FcPFN shows 36% and 90% amino acid sequence identity to the profilin genes of Pacific white shrimpLitopenaeus vannamei and black tiger shrimpPenaeus monodon, respectively. The FcPFN mRNA was highly expressed in hemocytes and hepatopancreas and moderately in muscle of normal shrimp. The higher expression of FcPFN mRNA is observed in shrimp infected with the white spot syndrome virus (WSSV), which is a major concern in all shrimp-growing regions of the world. These results suggest a potential role for FcPFN in viral host defense mechanisms.  相似文献   

19.
It has been generally accepted that invertebrates such as shrimp do not have an adaptive immune response system comparable to that of vertebrates. However, in the last few years, several studies have suggested the existence of such a response in invertebrates. In one of these studies, the shrimp Penaeus monodon showed increased protection against white spot syndrome virus (WSSV) using a recombinant VP28 envelope protein of WSSV. In an effort to further investigate whether this increased protection is limited to P. monodon or can be extended to other penaeid shrimp, experiments were performed using the Pacific white shrimp Litopenaeus vannamei. As found with P. monodon, a significantly lower cumulative mortality for VP28-fed shrimp was found compared to the controls. These experiments demonstrate that there is potential to use oral application of specific proteins to protect the 2 most important cultured shrimp species, P. monodon and L. vannamei, against WSSV. Most likely, this increased protection is based on a shared and, therefore, general defence mechanism present in all shrimp species. This makes the design of intervention strategies against pathogens based on defined proteins a viable option for shrimp culture.  相似文献   

20.
A black tiger shrimp (Penaeus monodon) caspase cDNA homologue (PmCasp) has been identified from a hemocyte library using a previously identified caspase homologue from the banana shrimp (Penaeus merguiensis) as a probe. The full-length PmCasp was 1202bp with a 954bp open reading frame, encoding 317 amino acids. The deduced protein contained a potential active site (QACRG pentapeptide) conserved in most caspases. It had 83% identity with caspase of P. merguiensis and 30% identity with drICE protein of Drosophila melanogaster, and it exhibited caspase-3 activity in vitro. PmCasp was cloned and expressed in Escherichia coli and a rabbit polyclonal antiserum was produced. In Western blots, the antiserum reacted with purified recombinant PmCasp and with lysates of E. coli containing the expressed plasmid. In crude protein extracts from normal shrimp, the antiserum reacted with 36 and 26kDa bands likely to correspond to inactive pro-caspase and its proteolytic intermediate form, respectively. PmCasp expression was measured in normal shrimp and in white spot syndrome virus (WSSV)-infected shrimp at 24 and 48h post-injection (p.i.) by semi-quantitative RT-PCR, Western blot analysis, and immunohistochemistry. Semi-quantitative RT-PCR analysis revealed up-regulation of PmCasp at 48h p.i. and expression remained high up to the moribund state. These results were supported by Western blot analysis showing increased PmCasp protein levels at 24 and 48h p.i. when compared to normal control shrimp. Immunohistochemical analysis of gills from the WSSV-infected shrimp revealed immunoreactivity localized in the cytoplasm of both normal and apparently apoptotic cells. In summary, a caspase-3 like gene is conserved in P. monodon and is up-regulated after WSSV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号