首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between beta-melanotropin (MSH), interleukin 1-a (IL-1), and ultraviolet light (UV) were examined in Cloudman S91 mouse melanoma and RHEK human squamous carcinoma cell lines. The following points were established: 1) both cell lines produced IL-1 and their production was stimulated by exposure of the cells to UV; 2) both cell lines possessed high affinity binding sites for MSH, and their ability to bind MSH was modulated by IL-1; 3) IL-1 exhibited both stimulatory and inhibitory effects on MSH binding to Cloudman cells; and 4) the stimulatory effect of IL-1 on MSH binding to melanoma cells was reflected in enhanced cellular responsiveness to MSH regarding tyrosinase activity (E.C. 1.14.18.1) and melanin content. The findings raise the possibility that interactions between keratinocytes and melanocytes may be regulated by IL-1 and MSH, and suggest a possible mechanism for stimulation of cutaneous melanogenesis by solar radiation: enhancement of MSH receptor activity by induction of IL-1.  相似文献   

2.
Cultured mouse Cloudman melanoma cells, EMT6 breast carcinoma cells, and 3T3 fibroblasts all accumulated in the G2/M phase of the cell cycle when exposed to UVB radiation. The effects of UVB were maximal at 20–30 mJ/cm2 for all three cell lines, and could be observed by flow cytometry as early as 12 hr post irradiation. It has been known since the mid-1970s that MSH receptor binding activity is highest on Cloudman melanoma cells when they are in the G2/M phase of their cycle. Here we show that either UVB irradiation or synchronization of Cloudman cells with colchicine results in a stimulation of MSH binding within 24 hr following treatment, a time when both treatments have resulted in accumulation of cells in the G2/M phase of the cycle. Furthermore, the two treatments performed together on the melanoma cells stimulated MSH receptor activity to the same extent as either treatment performed separately, suggesting that each may be influencing MSH receptor activity solely through a G2/M accumulation of cells. Together, these results raise the possibility that an increase in the number of cells in the G2 phase of the cell cycle is a generalized cellular response to injury, such as UV irradiation. However, in the case of pigment cells this response includes a mechanism for increasing melanin formation, i.e., increased MSH receptor activity. Should this be the case, similar G2/M “injury responses” of other cell types might be expected, consistent with their differentiated phenotypes.  相似文献   

3.
Abstract

We have examined the mechanism of homologous regulation of MSH receptor binding and receptor-mediated adenylate cyclase activation in three human and two mouse melanoma cell lines. Pretreatment with α-MSH resulted in a time- and dose-dependent up-regulation of MSH receptors in human D10 and 205 melanoma cells whereas in human HBL and in mouse B16–F1 and Cloudman S91 cells α-MSH induced receptor down-regulation. Up-regulation of receptors was maximal after a 24–h incubation period and an α-MSH concentration of 100 nM (EC50 = 2.4 nM). The increase in α-MSH binding was independent of adenylate cyclase activation and protein synthesis and appeared to be caused by recruitment of spare receptors. The structural requirements of the peptide for triggering this process differed from those found in receptor-binding analyses. Receptor down-regulation was maximal after 12 h and hence more rapid than up-regulation. In B16–F1 cells, 10 nM α-MSH caused the disappearance of 85–90% of the MSH receptors, the EC50 of 0.23 nM lying exactly between that for α-MSH-induced melanogenesis (0.027 nM) and the dissociation constant of receptor binding (1.31 nM). Down-regulation in B16–F1 cells appears to be the consequence of receptor internalization following MSH binding and seems to be initiated during an early step in MSH signalling, preceding the activation of adenylate cyclase and the cAMP signal. Receptor up- and down- regulation were not accompanied by an alteration in affinity to a-MSH, as demonstrated by Scatchard analysis of the binding curves.  相似文献   

4.
Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient (8-80%) and centrifuged (156,000g, 60 min); fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: 1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. 2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. 3) Most of the internal binding sites were not as dense as fully melanized melanosomes. 4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. 5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) 6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.  相似文献   

5.
6.
Expression of internal receptors for MSH is an important criterion for responsiveness to MSH by Cloudman melanoma cells (Orlow et al: J. Cell. Physiol., 142:129-136, 1990). Here, we show that internal and external receptors for MSH are of identical molecular weights (50-53 kDa) and share common antigenic determinants, indicating a structural relationship between the 2 populations of molecules. The internal receptors co-purified with a sub-cellular fraction highly enriched for small vesicles, many of which were coated. Ultraviolet B light (UVB) acted synergistically with MSH to increase tyrosinase activity and melanin content of cultured Cloudman melanoma cells, consistent with previous findings in the skin of mice and guinea pigs (Bolognia et al: J. Invest. Derm., 92:651-656, 1989). Preceding the rise in tyrosinase activity in cultured cells, UVB elicited a decrease in internal MSH binding sites and a concomitant increase in external sites. The time frame for the UVB effects on MSH receptors and melanogenesis, 48 hours, was similar to that for a response to solar radiation in humans. Together, the results indicate a key role for MSH receptors in the induction of melanogenesis by UVB and suggest a potential mechanism of action for UVB: redistribution of MSH receptors with a resultant increase in cellular responsiveness to MSH.  相似文献   

7.
8.
Studies on the Cloudman melanoma cell line as a model for the action of MSH   总被引:1,自引:0,他引:1  
A review of the studies done at Yale on the role of MSH in regulating pigmentation and growth of Cloudman (S91) melanoma cells is presented. The areas covered include the isolation and analyses of mutant cell lines unresponsive to MSH; the role of cyclic AMP, cyclic AMP-dependent protein kinases, and protein phosphorylation reactions in the response of MSH; new regulators of the melanogenesis pathway; the cytotoxicity of melanin precursors; the development of methodology for synthesizing 125I-beta-MSH; the use of this ligand to study receptors for MSH; and the chemical and biological properties of phosphorylated isomers of L-dopa, a new class of compounds exhibiting potent bio-activity toward melanocytes. All of the experiments described were carried out in the Department of Dermatology at the Yale University School of Medicine during the tenure of Dr. Aaron B. Lerner as chairman.  相似文献   

9.
DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.  相似文献   

10.
L-dopa is a key metabolite in the process of melanogenesis. However, it is difficult to use in biological experiments because it is subject to auto-oxidation and relatively insoluble at neutral pH. Dopa phosphates contain phosphate ester linkages at positions 3 and/or 4 of the phenylalanine ring of L-dopa, rendering them highly soluble and stable to auto-oxidation when compared to L-dopa. Dopa phosphates are readily taken up by melanoma cells in culture and converted to L-dopa and inorganic phosphate by cellular phosphatases, making them useful for studying L-dopa effects in vivo. Here we investigated the effects of dopa phosphates on receptors for MSH in cultured melanoma cells. We found that dopa phosphates caused a 3-fold stimulation of MSH binding capacity by the cells which probably occurred through an increase in the number of receptors for MSH with no apparent change in affinity of the receptors. The increased binding capacity for MSH was followed by increased cellular tyrosinase activity and melanogenesis. Thus dopa phosphates and/or L-dopa can act as regulators of the MSH receptor system. The observations suggest a novel mechanism for regulation of hormonal responsiveness: hormonal signal amplification by a metabolite in the target pathway.  相似文献   

11.
Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.  相似文献   

12.
Receptors for melanotropin (MSH) were found to be expressed by immortalized primary human epidermal keratinocytes (RHEK-1). Using 125I-βMSH as a probe, the MSH receptors from mouse melanoma cells and human keratinocytes were found to be remarkably similar. In each cell line, there were high and low affinity receptors, with the high affinity classes showing positive cooperativity. Competition of 125l-βMSH for binding with non-radioactive MSH revealed similar profiles. Cross-linking studies, followed by gel electrophoresis and autoradiography, showed almost identical gel migration patterns. Both cell types expressed internal as well as plasma membrane binding sites. MSH receptors on both cell types were up-regulated by ultraviolet light and by MSH itself. Although the function of MSH receptors expressed by the immortalized keratinocytes is unknown, the results are consistent with recent reports that proliferation of epidermal keratinocytes is stimulated by MSH and that proopiomelanocortin genes are expresed in the epidermis. These results support a model in which keratinocytes and melanocytes, interacting in an “epidermal-melanin unit,” each respond to UV light signals with increased MSH receptor activity. © 1993 Wiley-Liss, Inc.  相似文献   

13.
We recently reported that a majority of hybrids generated in vitro between weakly metastatic mouse Cloudman S91 melanoma cells and human or mouse macrophages showed enhanced metastatic potential. With few exceptions, hybrids with enhanced metastatic potential also had elevated basal melanin content and increased responsiveness to MSH compared to parental cells. Here we investigated the hybrid melanotic phenotype in more detail, comparing the pigmentary systems of hybrids and parental Cloudman S91 cells by several techniques. Cells were studied by electron microscopy, cell lysates were analyzed for tyrosinase (E.C.1.14.18.1) activity, and melanosomal proteins were analyzed by gel electrophoresis and immunoblotting. Melanosomes in parental Cloudman melanoma cells were few in number and relatively amorphous, whereas those in the hybrids were numerous and heavily pigmented, containing highly organized lattice structures. Both basal and MSH-inducible tyrosinase activities were elevated several fold in hybrids compared to parental cells. Tyrosinase, TRP-2, and LAMP-1 from hybrids migrated more slowly on gels compared to the same proteins from parental melanoma cells, consistent with increased glycosylation. Migration of LAMP-1 from hybrids was similar to that from peritoneal macrophages, which also appeared to be more heavily glycosylated than LAMP-1 from Cloudman cells. By using 3H-glucosamine as a marker of N-glycosylation, its incorporation into tyrosinase and LAMP-1 was found to be elevated in hybrids, suppressed by N-glycosylation inhibitors, and stimulated by MSH to a greater degree in hybrids compared to parental cells. These results indicate N-glycosylation as an important regulatory pathway for MSH-induced melanogenesis and further suggest that altered N-linked glycosylation may be an underlying mechanism for regulation of both melanogenesis and metastasis in macrophage x melanoma hybrids.  相似文献   

14.

Background/Aim

Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency.

Methods

HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay.

Results

Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10−4) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold.

Conclusions

MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis.  相似文献   

15.
Besides orthologs of other eukaryotic mismatch-repair (MMR) proteins, plants encode MSH7, a paralog of MSH6. The Arabidopsis thaliana recognition heterodimers AtMSH2·MSH6 (AtMutSα) and AtMSH2·MSH3 (AtMutSβ) were previously found to bind the same subsets of mismatches as their counterparts in other eukaryotes—respectively, base–base mismatches and single extra nucleotides, loopouts of extra nucleotides (one or more) only—but AtMSH2·MSH7 (AtMutSγ) bound well only to a G/T mismatch. To test hypotheses that MSH7 might be specialized for G/T, or for base mismatches in 5-methylcytosine contexts, we compared binding of AtMutSα and AtMutSγ to a series of mismatched DNA oligoduplexes, relative to their (roughly similar) binding to G/T DNA. AtMutSγ bound G/G, G/A, A/A and especially C/A mispairs as well or better than G/T, in contrast to MutSα, for which G/T was clearly the best base mismatch. The presence of 5-methylcytosine adjacent to or in a mispair generally lowered binding by both heterodimers, with no systematic difference between the two. Alignment of protein sequences reveals the absence in MSH7 of the clamp domains that in bacterial MutS proteins—and by inference MSH6 proteins—non-specifically bind the backbone of mismatched DNA, raising new questions as to how clamp domains enhance mismatch recogni tion. Plants must rigorously suppress mutation during mitotic division of meristematic cells that eventually give rise to gametes and may also use MMR proteins to antagonize homeologous recombination. The MSH6 versus MSH7 divergence may reflect specializations for particular mismatches and/or sequence contexts, so as to increase both DNA-replication and meiotic-recombination fidelity, or dedication of MSH6 to the former and MSH7 to the latter, consistent with genetic evidence from wheat.  相似文献   

16.
Geeta Vani R  Varghese CM  Rao MR 《Genomics》1999,62(3):460-467
The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process.  相似文献   

17.
It was recently reported that a majority of hybrids generated in vitro between weakly metastatic mouse Cloudman S91 melanoma cells and human or mouse macrophages showed enhanced metastatic potential (Rachkovsky et al., 1998). With few exceptions, hybrids with enhanced metastatic potential also had elevated basal melanin content, enhanced chemotactic responses to fibroblast-conditioned media, and stronger responsiveness to MSH compared to parental cells. Analyses revealed that altered N-glycosylation in metastatic hybrids could explain the multiple phenotypic changes. Tyrosinase, TRP-2 and LAMP-1 from hybrids migrated more slowly on gels compared to the same proteins from parental melanoma cells, consistent with increased glycosylation. Migration of LAMP-1 from hybrids was similar to that from peritoneal macrophages which also appeared to be more heavily glycosylated than LAMP-1 from Cloudman cells. The incorporation of 3H-glucosamine, as a marker of N-glycosylation, into tyrosinase and LAMP-1 was found to be elevated in hybrids, suppressed by N-glycosylation inhibitors and stimulated by MSH to a greater degree in hybrids compared to parental cells. These results indicate N-glycosylation as an important regulatory pathway for MSH-induced melanogenesis, and further suggest that altered N-linked glycosylation may be an underlying mechanism for regulation of both melanogenesis and metastasis in macrophage x melanoma hybrids.  相似文献   

18.
Mismatch repair (MMR) is involved in the removal of mispaired bases from DNA and thus plays an important role in the maintenance of genomic stability and the prevention of mutations and cancer. Moreover, MMR triggers genotoxicity and apoptosis upon processing of DNA lesions such as O6-methylguanine. Whereas the enzymology of MMR has been elucidated in great detail, only limited data are available concerning its regulation. Here we show that the major mismatch-binding proteins MSH2 and MSH6, forming the MutSα complex, are phosphorylated in vitro by protein kinase C and casein kinase II, but not by protein kinase A. Phosphorylation of MSH2 and MSH6 was also found within the cell, with MSH6 being more extensively phosphorylated than MSH2. Lack of MSH2 and MSH6 phosphorylation in vivo due to phosphate depletion, kinase inhibition (by H7 and quercetin) and treatment with phosphatases (CIP, SAP and λ-PPase) significantly reduced mismatch-binding activity of MutSα. It also prevented methylation-induced nuclear translocation of the repair complex, indicating that nuclear translocation of MutSα upon mutagen treatment is dependent on protein phosphorylation. The finding that MSH2 and MSH6 are subject to phosphorylation resulting in increased mismatch binding by MutSα indicates a novel type of post-translational regulation of MMR which might be involved in the response of cells to genotoxic stress.  相似文献   

19.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

20.
α-Melanocyte-stimulating hormone (MSH) is known to stimulate melanogenesis in murine melanoma, particularly in Cloudman S-91 melanoma cells. The effects of MSH and insulin on the proliferation of S91 murine melanoma cells have aroused controversy; in various reports, both hormones have been reported to either stimulate or inhibit murine melanoma growth. In our studies both MSH and insulin stimulated the colony-forming ability and the proliferative capacity of S-91 murine melanoma cells grown in soft agar with either serum-supplemented or serum-less medium. Unless insulin and/or MSH were present, Cloudman S-91 melanoma cells failed to clone in soft agar. The insulin effect was greater than that of MSH, and was more pronounced in serum-less than in serum-supplemented medium. The concurrent treatment of S91 melanoma cells with both MSH and insulin resulted in a greater increase in the total number of colonies formed than caused by treatment with either hormone alone. The combined MSH-insulin stimulation of anchorage-independent growth was specific, since the effect could not be mimicked by epidermal growth factor (EGF), gonadotropin-releasing hormone (GRH), luteinizing hormone (LH), nerve growth factor (NGF) or platelet-derived growth factor (PDGF). Therefore, MSH and insulin may be specific growth factors for murine melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号