首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Protein kinase D (PKD) has been established as a negative modulator of the c-Jun N-terminal kinase (JNK) signaling pathway. We previously demonstrated that induced expression of constitutively active PKD (PKD-S744/748E) that mimics phosphorylation by PKC is sufficient to attenuate epidermal growth factor (EGF) stimulated c-Jun Ser 63 phosphorylation, a natural substrate of JNK, in HEK 293 cells. Because the JNK pathway has been implicated in sustaining both lung and pancreatic cancerous phenotypes, we have utilized stable inducible expression of PKD-S744/748E in clones of A549 non-small cell lung cancer (NSCLC) and Panc1, pancreatic cancer cells to determine its effects on JNK signaling in the context of the cancerous phenotype. In contrast to HEK 293 cells, induced expression of PKD-S744/748E in either A549 NSCLC or Panc1 cells failed to attenuate EGF dependent phosphorylation of c-Jun, indicating that EGF stimulated JNK phosphorylation of c-Jun is uncoupled from PKD suppression in these cancer cells.  相似文献   

2.
Protein kinase D (PKD) is a serine/threonine protein kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids. Here, we examine the regulation of PKD in living cells. Our results demonstrate that tumour-promoting phorbol esters, membrane-permeant diacylglycerol and serum growth factors rapidly induced PKD activation in immortalized cell lines (e.g. Swiss 3T3 and Rat-1 cells), in secondary cultures of mouse embryo fibroblasts and in COS-7 cells transiently transfected with a PKD expression construct. PKD activation was maintained during cell disruption and immunopurification and was associated with an electrophoretic mobility shift and enhanced 32P incorporation into the enzyme, but was reversed by treatment with alkaline phosphatase. PKD was activated, deactivated and reactivated in response to consecutive cycles of addition and removal of PDB. PKD activation was completely abrogated by exposure of the cells to the protein kinase C inhibitors GF I and Ro 31-8220. In contrast, these compounds did not inhibit PKD activity when added directly in vitro. Co-transfection of PKD with constitutively activated mutants of PKCs showed that PKCepsilon and eta but not PKCzeta strongly induced PKD activation in COS-7 cells. Thus, our results indicate that PKD is activated in living cells through a PKC-dependent signal transduction pathway.  相似文献   

3.
Vinexin, a novel protein that plays a key role in cell spreading and cytoskeletal organization, contains three SH3 domains and binds to vinculin through its first and second SH3 domains. We show here that the third SH3 domain binds to Sos, a guanine nucleotide exchange factor for Ras and Rac, both in vitro and in vivo. Point mutations in the third SH3 domain abolished the vinexin-Sos interaction. Stimulation of NIH/3T3 cells with serum, epidermal growth factor (EGF), or platelet-derived growth factor (PDGF) decreased the electrophoretic mobility of Sos and concomitantly inhibited formation of the vinexin-Sos complex. Phosphatase treatment of lysates restored the binding of Sos to vinexin, suggesting that signaling from serum, EGF, or PDGF regulates the vinexin-Sos complex through the Sos phosphorylation. To evaluate the function of vinexin downstream of growth factors, we examined the effects of wild-type and mutant vinexin expression on extracellular signal-regulated kinase (Erk) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation in response to EGF. Exogenous expression of vinexin beta in NIH/3T3 cells enhanced JNK/SAPK activation but did not affect Erk activation. Moreover mutations in the third SH3 domain abolished EGF activation of JNK/SAPK in a dominant-negative fashion, whereas they slightly stimulated Erk. Together these results suggest that vinexin can selectively modulate EGF-induced signal transduction pathways leading to JNK/SAPK kinase activation.  相似文献   

4.
Heparin and heparan are potent inhibitors of vascular smooth muscle cell (VSMC) proliferation. To investigate the mechanisms by which heparin suppresses growth factor stimulated mitogenesis, the present experiments investigated the effects of heparin on platelet-derived growth factor (PDGF) stimulated signal transduction pathways. Heparin treatment substantially inhibited PDGF-BB stimulated rat VSMC growth. Western analysis showed a 30 min PDGF-BB treatment of VSMC induced the tyrosine phosphorylation of multiple protein bands; cotreatment with heparin inhibited mitogen-activated protein (MAP) kinase tyrosine phosphorylation but had little effect on PDGF receptor tyrosine phosphorylation. In-gel kinase assays demonstrated that heparin inhibited PDGF-BB stimulated MAP kinase activity at late (25 min) but not early (10 min) time points. These data indicate that heparin does not inhibit the initial signalling events after PDGF-BB binding but instead acts through an alternate mechanism to inhibit MAP kinase. To investigate if heparin directly stimulates tyrosine phosphatase-mediated suppression of MAP kinase, we treated VSMC with orthovanadate, a tyrosine phosphatase inhibitor. Heparin inhibited MAP kinase tyrosine phosphorylation after orthovanadate treatment, indicating that heparin does not suppress MAP kinase by enlistment of a tyrosine phosphatase. Experiments were performed to investigate signalling pathways upstream of MAP kinase. To determine if protein kinase C (PKC) mediates PDGF-BB, serum, and EGF stimulation of MAP kinase, we treated VSMC overnight with phorbol ester (PMA) to downregulate PKC. Abolition of conventional and novel PKC activity significantly suppressed both serum and PDGF-BB induced MAP kinase activation, indicating protein kinase C is an important mediator for these mitogens. In contrast, downregulation of these PKC isoforms had little effect on EGF stimulation of MAP kinase. As heparin inhibits PDGF and serum but not EGF stimulation of MAP kinase, these data precisely correlate heparin inhibition of MAP kinase with activation through PKC-dependent pathways. Immunoprecipitation analysis found that heparin inhibited serum, PMA, and PDGF but not EGF induced raf-1 phosphorylation. These studies demonstrate that heparin did not block PDGF-BB receptor activation, which initiates the mitogenic signalling cascade. Heparin did inhibit specific postreceptor second messenger signals, such as the late phase activation of MAP kinase, which may be mediated by suppression of PKC-dependent pathways. J. Cell. Physiol. 172:69–78, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

6.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

7.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

8.
Treatment of intact Rat-1 fibroblasts with epidermal growth factor (EGF) leads to rapid activation of cellular ras-encoded proteins. By using the bacterial toxin streptolysin O to permeabilize these cells, it was shown that the low basal rate at which guanine nucleotides bind to, and dissociate from, ras-encoded protein in quiescent fibroblasts was greatly accelerated by EGF treatment. Nucleotide binding to other proteins was not affected. Stimulation of nucleotide exchange on ras-encoded protein required tyrosine kinase but not phospholipase activity. EGF had no effect on total GTPase-activating protein activity. Regulation of ras-encoded protein in Rat-1 fibroblasts is therefore mediated by stimulation, either directly or indirectly, of ras-encoded protein-specific guanine nucleotide exchange factors by the EGF receptor tyrosine kinase.  相似文献   

9.
The canonical extracellular-regulated kinase (ERK) signaling cascade, consisting of the Ras-Raf-Mek-ERK module, is critically important to many cellular functions. Although the general mechanism of activation of the ERK cascade is well established, additional noncanonical components greatly influence the activity of this pathway. Here, we focus on the group A p21-activated kinases (Paks), which have previously been implicated in regulating both c-Raf and Mek1 activity, by phosphorylating these proteins at Ser(338) and Ser(298), respectively. In NIH-3T3 cells, expression of an inhibitor of all three group A Paks reduced activation of ERK in response to platelet-derived growth factor (PDGF) but not to epidermal growth factor (EGF). Similar results were obtained in HeLa cells using small interference RNA-mediated simultaneous knockdown of both Pak1 and Pak2 to reduce group A Pak function. Inhibition of Pak kinase activity dramatically decreased phosphorylation of Mek1 at Ser(298) in response to either PDGF or EGF, but this inhibition did not prevent Mek1 activation by EGF, suggesting that although Pak can phosphorylate Mek1 at Ser(298), this event is not required for Mek1 activation by growth factors. Inhibition of Pak reduced the Ser(338) phosphorylation of c-Raf in response to both PDGF and EGF; however, in the case of EGF, the reduction in Ser(338) phosphorylation was not accompanied by a significant decrease in c-Raf activity. These findings suggest that Paks are required for the phosphorylation of c-Raf at Ser(338) in response to either growth factor, but that the mechanisms by which EGF and PDGF activate c-Raf are fundamentally different.  相似文献   

10.
The tumor suppressor PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits integrin-mediated cell spreading and cell migration. We demonstrate here that expression of PTEN selectively inhibits activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. PTEN expression in glioblastoma cells lacking the protein resulted in inhibition of integrin-mediated MAP kinase activation. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)- induced MAPK activation were also blocked. To determine the specific point of inhibition in the Ras/Raf/ MEK/ERK pathway, we examined these components after stimulation by fibronectin or growth factors. Shc phosphorylation and Ras activity were inhibited by expression of PTEN, whereas EGF receptor autophosphorylation was unaffected. The ability of cells to spread at normal rates was partially rescued by coexpression of constitutively activated MEK1, a downstream component of the pathway. In addition, focal contact formation was enhanced as indicated by paxillin staining. The phosphatase domain of PTEN was essential for all of these functions, because PTEN with an inactive phosphatase domain did not suppress MAP kinase or Ras activity. In contrast to its effects on ERK, PTEN expression did not affect c-Jun NH2-terminal kinase (JNK) or PDGF-stimulated Akt. Our data suggest that a general function of PTEN is to down-regulate FAK and Shc phosphorylation, Ras activity, downstream MAP kinase activation, and associated focal contact formation and cell spreading.  相似文献   

11.
The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.  相似文献   

12.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  相似文献   

13.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

14.
Insulin receptor substrate-1 (IRS-1) is a key protein in the insulin-like growth factor (IGF) signaling whose tyrosine phosphorylation by the type 1 IGF receptor is necessary for the recruitment and activation of the downstream effectors. Through the analysis of cross-talks occurring between different tyrosine kinase receptor-dependent signaling pathways, we investigated how two growth factors [epidermal growth factor (EGF) and fibroblast growth factor (FGF)] could modulate the IGF-I-induced IRS-1 tyrosine phosphorylation and its downstream signaling. EGF and FGF inhibited IGF-I-stimulated tyrosine phosphorylation of IRS-1 and the subsequent IGF-I-induced phosphatidylinositol 3-kinase (PI 3-kinase) activity. These EGF- and FGF-inhibitory effects were dependent on both PI 3-kinase and protein kinase D1 (PKD1) signaling pathways but independent on the extracellular signal-regulated kinase (ERK) pathway. PKD1, which was activated independently of the PI 3-kinase pathway, associated with IRS-1 in response to EGF or FGF. Unlike PI 3-kinase, PKD1 did not mediate the EGF- or FGF-induced-IRS-1 serine 307 phosphorylation which was described to inhibit IRS-1. Interestingly, specific inhibition of either PI 3-kinase or PKD1 totally impaired EGF- or FGF-induced inhibition of IGF-I-stimulated IRS-1 tyrosine phosphorylation. This indicated that serine 307 phosphorylation of IRS-1 is not sufficient per se to inhibit the IGF signaling pathway and demonstrated for the first time that the negative regulation of IRS-1 requires the coordinated action of PI 3-kinase and PKD1. This further suggests that PKD1 may be an attractive target for innovative strategies that target the IGF signaling pathway.  相似文献   

15.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

16.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin protect density-inhibited murine Balb/c-3T3 fibroblasts against death by distinctive mechanisms. Determination of the cell survival-enhancing activity of growth factors by cell enumeration and neutral red uptake measurement gives equivalent results. PDGF displays a steep dose-response relationship in the 1-5 ng/ml range. The other factors display shallow log-linear relationships in the following ranges: EGF: 0.2-5 ng/ml; IGF-1: 2-80 ng/ml; and insulin: 57-4,500 ng/ml. Agonists that lead to the activation of protein kinase A, including forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate (Br-cAMP) and N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), markedly increase both short-term (5-h) and long-term (20-h) survival of cells. 2-Isobutyl-1-methylxanthine (IBMX) markedly enhances short-term survival, but its effect decays with time. The protein kinase C agonist 12-O-tetradecanoyl phorbol-13-acetate (TPA) has a moderate protective effect at concentrations of 16-32 nM, and 64 nM TPA is highly effective. The synthetic diaclglycerols 1,2-dioctanoylglycerol (DiC8) and 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore ionomycin show low activity. Supplementation of EGF with a protein kinase A or C agonist results in a varying additive increase in short-term (5-h) cell survival and supplementation of EGF + insulin or PDGF + EGF + insulin increases further the already high level of protection given by the growth factor combinations. Combining a protein kinase A and a protein kinase C agonist in the absence of growth factors gives an approximately additive increase in cell survival. Results obtained with kinase, RNA, and protein synthesis inhibitors suggest that: 1) activated protein kinase C catalyzes one or more phosphorylation events in quiescent Balb/c-3T3 cells that lead to gene expression with the protein product(s) mediating protection of quiescent cells against death, and 2) phosphorylation events catalyzed by protein kinase A largely serve to protect cells by a mechanism not requiring de novo RNA and protein biosynthesis.  相似文献   

17.
The importance of activation loop phosphorylation in the regulation of protein kinase D (PKD/protein kinase C (PKC) mu) activity has become controversial. In order to clarify the mechanism(s) of PKD activation, we developed a novel phosphospecific antibody recognizing phosphorylated Ser(748) in PKD (pS748). Western blot analysis with the pS748 antibody, carried out with a variety of PKD forms and in a variety of cell types including full-length PKD transfected in COS-7 and HEK 293 cells, a green fluorescent protein-PKD fusion protein transfected in either Swiss 3T3 fibroblasts or Madin-Darby canine kidney epithelial cells, and endogenous PKD expressed in A20 lymphocytes and Rat-1 fibroblasts, indicated that Ser(748) phosphorylation was absent from unstimulated cells. In contrast, dramatic increases in Ser(748) phosphorylation were induced by phorbol esters, bombesin, or cross-linking of B lymphocyte antigen receptors or by cotransfection with active PKCepsilon or PKCeta. Western analysis using a second phosphospecific antibody, which primarily recognizes PKD phosphorylated at Ser(744), revealed that Ser(744) phosphorylation accompanies Ser(748) phosphorylation during PKD activation in vivo. Ser(744)/Ser(748) phosphorylation requires PKC but not PKD activity, indicative of transphosphorylation. Our results provide new experimental evidence indicating that activation loop phosphorylation at Ser(744) and Ser(748) occurs during PKD activation in vivo and support the notion of a PKC-PKD phosphorylation cascade.  相似文献   

18.
Epidermal growth factor (EGF), a mitogen for renal proximal tubule cells, activated the hexose monophosphate (HMP) shunt in renal proximal tubule cells (Stanton, R. C., and Seifter, J. L. (1988) Am. J. Physiol. 254, C267-C271). We therefore evaluated the effect of EGF on the HMP shunt enzymes glucose 6-phosphate dehydrogenase (G6PD, the rate-limiting enzyme) and 6-phosphogluconate dehydrogenase. Rat renal cortical cells (RCC) were incubated with either EGF or platelet-derived growth factor (PDGF) and then assayed for G6PD and 6-phosphogluconate dehydrogenase activities. EGF and PDGF increased G6PD activity by 25 and 27% respectively. Although phorbol myristate acetate (PMA), ionomycin, PMA + ionomycin, and 8-bromo-cyclic AMP had no significant effect on the activity, a 5-min preincubation with PMA potentiated the activation of G6PD by PDGF. Growth factor activation of G6PD was also seen in a fibroblast and epithelial cell line. None of the agents affected 6-phosphogluconate dehydrogenase activity in the RCC or in the cell lines. Further exploration into a possible mechanism for G6PD activation revealed that growth factors caused release of G6PD from a structural element within the cell. Streptolysin O permeabilization of RCC did not cause significant release of G6PD. However, within 1 min of addition of EGF or PDGF to permeabilized cells, G6PD was released into the cell supernatant. The nonhydrolyzable analog of GTP, guanosine 5'-O-(thiotriphosphate), caused a similar release of G6PD. Preincubation with pertussis toxin or guanyl-5'-yl thiophosphate inhibited the PDGF but not the EGF effect. Although the data do not establish a definitive proof linking G6PD release and G6PD activation, these results suggest that they are related. Thus, growth factor stimulation of the HMP shunt likely occurs by a novel mechanism associated with release of bound G6PD.  相似文献   

19.
Platelet-derived growth factor (PDGF) causes an acute decrease in the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an increase in the phosphorylation state of the EGF receptor at threonine654. The hypothesis that PDGF action to regulate the EGF receptor is mediated by the activation of protein kinase C and the subsequent phosphorylation of EGF receptor threonine654 was tested. The human receptors for PDGF and EGF were expressed in Chinese hamster ovary cells that lack expression of endogenous receptors for these growth factors. The heterologous regulation of the EGF receptor by PDGF was reconstituted in cells expressing [Thr654]EGF receptors or [Ala654]EGF receptors. PDGF action was also observed in phorbol ester down-regulated cells that lack detectable protein kinase C activity. Together these data indicate that neither protein kinase C nor the phosphorylation of EGF receptor threonine654 is required for the regulation of the apparent affinity of the EGF receptor by PDGF.  相似文献   

20.
In cultured vascular smooth muscle cells (VSMC), the vasculotrophic factor, angiotensin II (AngII) activates three major MAPKs via the G(q)-coupled AT1 receptor. Extracellular signal-regulated kinase (ERK) activation by AngII requires Ca(2+)-dependent "transactivation" of the EGF receptor that may involve a metalloprotease to stimulate processing of an EGF receptor ligand from its precursor. Whether EGF receptor transactivation also contributes to activation of other members of MAPKs such as p38MAPK and c-Jun N-terminal kinase (JNK) by AngII remains unclear. In the present study, we have examined the effects of a synthetic metalloprotease inhibitor BB2116, and the EGF receptor kinase inhibitor AG1478 on AngII-induced activation of MAPKs in cultured VSMC. BB2116 markedly inhibited ERK activation induced by AngII or the Ca(2+) ionophore without affecting the activation by EGF or PDGF. BB2116 as well as HB-EGF neutralizing antibody inhibited the EGF receptor transactivation by AngII, suggesting a critical role of HB-EGF in the metalloprotease-dependent EGF receptor transactivation. In addition to the ERK activation, activation of p38MAPK and JNK by AngII was inhibited by an AT1 receptor antagonist, RNH6270. and EGF markedly activate p38MAPK, whereas but not EGF markedly activates JNK, indicating the possible contribution of the EGF receptor transactivation to the p38MAPK activation. The findings that both BB2116 and AG1478 specifically inhibited activation of p38MAPK but not JNK by AngII support this hypothesis. From these data, we conclude that ERK and p38MAPK activation by AngII requires the metalloprotease-dependent EGF receptor transactivation, whereas the JNK activation is regulated without involvement of EGF receptor transactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号