首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Coincidental equilibrium unfolding transitions observed by multiple structural probes are taken to justify the modeling of protein unfolding as a two-state, N <==> U, cooperative process. However, for many of the large number of proteins that undergo apparently two-state equilibrium unfolding reactions, folding intermediates are detected in kinetic experiments. The small protein barstar is one such protein. Here the two-state model for equilibrium unfolding has been critically evaluated in barstar by estimating the intramolecular distance distribution by time-resolved fluorescence resonance energy transfer (TR-FRET) methods, in which fluorescence decay kinetics are analyzed by the maximum entropy method (MEM). Using a mutant form of barstar containing only Trp 53 as the fluorescence donor and a thionitrobenzoic acid moiety attached to Cys 82 as the fluorescence acceptor, the distance between the donor and acceptor has been shown to increase incrementally with increasing denaturant concentration. Although other probes, such as circular dichroism and fluorescence intensity, suggest that the labeled protein undergoes two-state equilibrium unfolding, the TR-FRET probe clearly indicates multistate equilibrium unfolding. Native protein expands progressively through a continuum of native-like forms that achieve the dimensions of a molten globule, whose heterogeneity increases with increasing denaturant concentration and which appears to be separated from the unfolded ensemble by a free energy barrier.  相似文献   

2.
Sridevi K  Udgaonkar JB 《Biochemistry》2003,42(6):1551-1563
The denaturant-induced unfolding kinetics of the 89-residue protein, barstar, have been examined using fluorescence resonance energy transfer (FRET) at 25 degrees C and pH 8.0. The core tryptophan, Trp53, in barstar serves as a fluorescence donor, and a thionitrobenzoic acid moiety (TNB) attached to a cysteine residue acts as an acceptor to form an efficient FRET pair. Four different single-cysteine containing mutants of barstar with cysteine residues at positions 25, 40, 62, and 82 were studied. The unfolding kinetics of the four mutant forms of barstar were monitored by measurement of the changes in the fluorescence intensity of Trp53 in the unlabeled and TNB-labeled proteins. The rate of change of fluorescence of the single-tryptophan residue, Trp53, in the unlabeled protein, where no FRET occurs, yields the rate of solvation of the core. This rate is similar for all four unlabeled proteins. The rate of the increase in the fluorescence of Trp53 in the labeled protein, where FRET from the tryptophan to the TNB label occurs, yields the rate of decrease in FRET efficiency during unfolding. The decrease in FRET efficiency for proteins labeled at either of the two buried positions (Cys40 or Cys82) occurs at a rate similar to the rate of core solvation. The decrease in FRET efficiency for the acceptor at Cys40 is also shown to be sensitive to the isomerization of the Tyr47-Pro48 cis bond. For the proteins where the label is at a solvent-exposed position (Cys25 and Cys62), the decrease in FRET efficiency occurs in two kinetic phases; 15-25% of the FRET efficiency decreases in the faster phase, and the remaining FRET efficiency decreases in a slower phase, the rate of which is the same as the rate of core solvation. These results clearly indicate that, during unfolding, the protein surface expands faster than, and independently of, water intrusion into the core.  相似文献   

3.
A K Bhuyan  J B Udgaonkar 《Biochemistry》1999,38(28):9158-9168
The kinetics of the slow folding and unfolding reactions of barstar, a bacterial ribonuclease inhibitor protein, have been studied at 23(+/-1) degrees C, pH 8, by the use of tryptophan fluorescence, far-UV circular dichroism (CD), near-UV CD, and transient mixing (1)H nuclear magnetic resonance (NMR) spectroscopic measurements in the 0-4 M range of guanidine hydrochloride (GdnHCl) concentration. The denaturant dependences of the rates of folding and unfolding processes, and of the initial and final values of optical signals associated with these kinetic processes, have been determined for each of the four probes of measurement. Values determined for rates as well as amplitudes are shown to be very much probe dependent. Significant differences in the intensities and rates of appearance and disappearance of several resolved resonances in the real-time one-dimensional NMR spectra have been noted. The NMR spectra also show increasing dispersion of chemical shifts during the slow phase of refolding. The denaturant dependences of rates display characteristic folding chevrons with distinct rollovers under strongly native as well as strongly unfolding conditions. Analyses of the data and comparison of the results obtained with different probes of measurement appear to indicate the accumulation of a myriad of intermediates on parallel folding and unfolding pathways, and suggest the existence of an ensemble of transition states. The energetic stabilities of the intermediates estimated from kinetic data suggest that they are approximately half as stable as the fully folded protein. The slowness of the folding and unfolding processes (tau = 10-333 s) and values of 20.5 (+/-1.4) and 18 (+/-0.5) kcal mol(-)(1) for the activation energies of the slow refolding and unfolding reactions suggest that proline isomerization is involved in these reactions, and that the intermediates accumulate and are therefore detectable because the slow proline isomerization reaction serves as a kinetic trap during folding.  相似文献   

4.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

5.
The fluorescence-monitored kinetics of folding and unfolding of barstar by guanidine hydrochloride (GdnHCl) in the folding transition zone, at pH 7, 25 degrees C, have been quantitatively analyzed using a 3-state mechanism: U(S)<-->UF<-->N. U(S) and UF are slow-refolding and fast-refolding unfolded forms of barstar, and N is the native protein. U(S) and UF probably differ in possessing trans and cis conformations, respectively, of the Tyr 47-Pro 48 bond. The 3-state model could be used because the kinetics of folding and unfolding of barstar show 2 phases, a fast phase and a slow phase, and because the relative amplitudes of the 2 phases depend only on the final refolding conditions and not on the initial conditions. Analysis of the observed kinetics according to the 3-state model yields the values of the 4 microscopic rate constants that describe the transitions between the 3 states at different concentrations of GdnHCl. The value of the equilibrium unfolded ratio U(S):UF (K21) and the values of the rate constants of the U(S)-->UF and UF-->U(S) reactions, k12 and k21, respectively, are shown to be independent of the concentration of GdnHCl. K21 has a value of 2.1 +/- 0.1, and k12 and k21 have values of 5.3 x 10(-3) s-1 and 11.2 x 10(-3) s-1, respectively. Double-jump experiments that monitor reactions that are silent to fluorescence monitoring were used to confirm the values of K21, k12, and k21 obtained from the 3-state analysis and thereby the validity of the 3-state model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.  相似文献   

8.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

9.
Equilibrium unfolding of barstar with guanidine hydrochloride (GdnHCl) and urea as denaturants as well as thermal unfolding have been carried out as a function of pH using fluorescence, far-UV and near-UV CD, and absorbance as probes. Both GdnHCl-induced and urea-induced denaturation studies at pH 7 show that barstar unfolds through a two-state F<->U mechanism and yields identical values for delta GU, the free energy difference between the fully folded (F) and unfolded (U) forms, of 5.0 +/- 0.5 kcal.mol-1 at 25 degrees C. Thermal denaturation of barstar also follows a two-state F<->U unfolding transition at pH 7, and the value of delta GU at 25 degrees C is similar to that obtained from chemical denaturation. The pH dependence of denaturation by GdnHCl is complex. The Cm value (midpoint of the unfolding transition) has been used as an index for stability in the pH range 2-10, because barstar does not unfold through a two-state transition on denaturation by GdnHCl at all pH values studied. Stability is maximum at pH 2-3, where barstar exists in a molten globule-like form that forms a large soluble oligomer. The stability decreases with an increase in pH to 5, the isoelectric pH of the protein. Above pH 5, the stability increases as the pH is raised to 7. Above pH 8, it again decreases as the pH is raised to 10. The decrease in stability from pH 7 to 5 in wild-type (wt) barstar, which is shown to be characterized by an apparent pKa of 6.2 +/- 0.2, is not observed in H17Q, a His 17-->Gln 17 mutant form of barstar. This decrease in stability has therefore been correlated with the protonation of His 17 in barstar. The decrease in stability beyond pH 8 in wt barstar, which is characterized by an apparent pKa of 9.2 +/- 0.2, is not detected in BSCCAA, the Cys 40 Cys 82-->Ala 40 Ala 82 double mutant form of barstar. Thus, this decrease in stability has been correlated with the deprotonation of at least one of the two cysteines present in wt barstar. The increase in stability from pH 5 to 3 is characterized by an apparent pKa of 4.6 +/- 0.2 for wt barstar and BSCCAA, which is similar to the apparent pKa that characterizes the structural transition leading to the formation of the A form. The use of Cm as an index of stability has been supported by thermal denaturation studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Chedad A  Van Dael H 《Proteins》2004,57(2):345-356
The equilibrium unfolding and the kinetic folding and unfolding of goat alpha-lactalbumin (GLA) were studied by near- and far-ultraviolet circular dichroism (CD) and by stopped-flow fluorescence spectroscopy. Specifically, the influence of environmental conditions such as pH and Ca2+ binding was examined. Compared to the apo-form, the Ca2+-bound form was found to be strongly stabilized in equilibrium conditions at pH 7.5 and 25 degrees C. The kinetics of the refolding of apo-GLA show a major change of fluorescence intensity during the experimental dead-time, but this unresolved effect is strongly diminished in holo-GLA. In both cases, however, the chevron plots can adequately be fitted to a three-state model. Moreover, double-mix stopped-flow experiments showed that the native state (N) is reached through one major pathway without the occurrence of alternative tracks. In contrast to the homologous bovine alpha-lactalbumin (BLA), the compactness of GLA is strongly influenced by the presence of Ca2+ ions. Unlike the two-state transition observed in guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation experiments at higher pH, an equilibrium intermediate state (I) is involved in denaturation at pH 4.5. In the latter case, analysis of the kinetic data makes clear that the intermediate and the unfolded states (U) show practically no Gibbs free energy difference and that they are in rapid equilibrium with each other. A possible explanation for these variations in stability and in folding characteristics with pH could be the degree of protonation of His107 that directly influences non-native interactions. Variation of environmental conditions and even small differences in sequence, therefore, can result in important effects on thermodynamic and folding parameters.  相似文献   

11.
The equilibrium and kinetics studies of an 82 kDa large monomeric Escherichia coli protein Malate Synthase G (MSG) was investigated by far and near-UV CD, intrinsic tryptophan fluorescence and extrinsic fluorescence spectroscopy. We find that despite of its large size, folding is reversible, in vitro. Equilibrium unfolding process of MSG exhibited three-state transition thus, indicating the presence of at least a stable equilibrium intermediate. Thermodynamic parameters suggest this intermediate resembles the unfolded state. However, the equilibrium intermediate exhibits pronounced secondary structure as measured by far-UV CD, partial tertiary structure as delineated by near-UV CD, compactness (m value) and exposed hydrophobic surface area as assessed by ANS binding, typically depicting a molten globule state. The stopped-flow kinetic data provide clear evidence for the presence of a burst phase during the refolding pathway due to the formation of an early Intermediate, within the dead time of the instrument. Refolding from 4 M to various lower concentrations until 0.4 M of GdnHCl follow biphasic kinetics at lower concentrations of GdnHCl (<0.8 M), whereas monophasic kinetics at concentrations above 1.5 M. Also, rollover in the refolding and unfolding limbs of chevron plot verifies the presence of a fast kinetic intermediate at lower concentration of GdnHCl. Based upon the above observations we hereby propose the folding pathway of a large multi-domain protein Malate Synthase G.  相似文献   

12.
Bhuyan AK  Kumar R 《Biochemistry》2002,41(42):12821-12834
To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80 coordination contact clearly impose high-energy kinetic barriers to folding and unfolding of ferrocytochrome c. The unfolding barrier due to the Fe2+-M80 bond provides sufficient kinetic stability to the native state of ferrocytochrome c to perform its physiological function as an electron donor.  相似文献   

13.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

14.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   

15.
For small single-domain proteins, formation of the native conformation (N) from a fully unfolded form (U) or from a partially folded intermediate (I) occurs typically in a highly cooperative process that can be described by a two-state model. However, it is not clear whether cooperativity arises early along the folding reaction and whether folding intermediates are also formed in highly cooperative processes. Here, we show that each previously identified step leading apomyoglobin from its unfolded form to its native form, namely, the U <= => Ia, the Ia <= => Ib, and the Ib <= => N reactions, exhibits typical features of a two-state reaction. First, refolding and unfolding kinetics of the earliest U <= => Ia reaction are measurable at pH 4.2 within the urea-induced unfolding transition [Jamin, M., and Baldwin, R. L. (1996) Nat. Struct. Biol. 3, 613-618; Jamin, M., and Baldwin, R. L. (1998) J. Mol. Biol. 276, 491-504], and we report here that sub-millisecond kinetics measured by far-UV circular dichroism (CD), a probe of secondary structure, are similar to those measured by Trp fluorescence, a probe of hydrophobic core formation and chain collapse. These results confirm that folding of the earliest intermediate, Ia, occurs in a highly cooperative process, in which hydrophobic collapse and secondary structure formation occur concomitantly in the A(B)GH core. Second, when the refolding of N is measured at high pH, starting from the acid-unfolded ensemble, the formation of Ia occurs in the mixing time of the sub-millisecond stopped-flow, but the subsequent steps, the Ia <= => Ib and Ib <= => N reactions, exhibit similar kinetics by far-UV CD and Trp fluorescence, indicating that these two late stages of the apoMb folding process also occur in highly cooperative, two-state reactions.  相似文献   

16.
The evolution of the nanosecond dynamics of the core tryptophan, Trp53, of barstar has been monitored during the induction of collapse and structure formation in the denatured D form at pH 12, by addition of increasing concentrations of the stabilizing salt Na(2)SO(4). Time-resolved fluorescence methods have been used to monitor the dynamics of Trp53 in the intermediates that are populated during the salt-induced transition of the D form to the molten globule B form. The D form approximates a random coil and displays two rotational correlation times. A long rotational correlation time of 2.54 ns originates from segmental mobility, and a short correlation time of 0.26 ns originates from independent motion of the tryptophan side chain. Upon addition of approximately 0.1 M Na(2)SO(4), the long rotational correlation time increases to approximately 6.4 ns, as the chain collapses and the segmental motions merge to reflect the global tumbling motion of a pre-molten globule P form. The P form exists as an expanded form with approximately 30% greater volume than the native (N) state. The persistence of an approximately 50% contribution to anisotropy decay by the short rotational correlation time suggests that the core of the P form is highly molten and permits free rotation of the Trp side chain. With increasing salt concentrations, tight core packing is achieved before secondary and tertiary structure formation is complete, an observation which agrees well with earlier kinetic folding studies. Thus, the equilibrium model developed here for describing the formation of structure during folding faithfully captures snapshots of transient kinetic intermediates observed on the folding pathway of barstar. A comparison of the refolding kinetics at pH 7, when refolding is initiated from the D, P, and B forms, suggests that formation of a collapsed state with a rigid core and approximately 30% secondary and tertiary structure, which presumably defines a coarse native-like topology, constitutes the intrinsic barrier in the folding of barstar.  相似文献   

17.
Understanding the origins of cooperativity in proteins remains an important topic in protein folding. This study describes experimental folding/unfolding equilibrium and kinetic studies of the engineered protein Ubq-UIM, consisting of ubiquitin (Ubq) fused to the sequence of the ubiquitin interacting motif (UIM) via a short linker. Urea-induced folding/unfolding profiles of Ubq-UIM were monitored by far-UV circular dichroism and fluorescence spectroscopies and compared to those of the isolated Ubq domain. It was found that the equilibrium data for Ubq-UIM is inconsistent with a two-state model. Analysis of the kinetics of folding shows similarity in the folding transition state ensemble between Ubq and Ubq-UIM, suggesting that formation of Ubq domain is independent of UIM. The major contribution to the stabilization of Ubq-UIM, relative to Ubq, was found to be in the rates of unfolding. Moreover, it was found that the kinetic m-values for Ubq-UIM unfolding, monitored by different probes (far-UV circular dichroism and fluorescence spectroscopies), are different; thereby, further supporting deviations from a two-state behavior. A thermodynamic linkage model that involves four states was found to be applicable to the urea-induced unfolding of Ubq-UIM, which is in agreement with the previous temperature-induced unfolding study. The applicability of the model was further supported by site-directed variants of Ubq-UIM that have altered stabilities of Ubq/UIM interface and/or stabilities of individual Ubq- and UIM-domains. All variants show increased cooperativity and one variant, E43N_Ubq-UIM, appears to behave very close to an equilibrium two-state.  相似文献   

18.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

19.
Evidence that proteins may unfold utilizing complex competing pathways comes from a new pulse-labeling protocol in which the change in reactivity of a single cysteine residue in a protein during unfolding is measured, making use of its easily monitored reaction with the Ellman reagent, dithionitrobenzoic acid. The kinetics of unfolding of two single cysteine-containing mutant forms of the small protein barstar, C82A, which contains only Cys40, and C40A, which contains only Cys82, have been studied. The data suggest that unfolding occurs via two parallel pathways, each forming competing intermediates. In one of these early intermediates, Cys40 and Cys82 are already as reactive as they are in the fully unfolded protein, while in the other intermediate, the Cys thiol groups are unreactive. One more long-lived intermediate also needs to be included on the pathway defined by the early intermediate with unreactive Cys thiol groups to account for the difference in the rates of fluorescence change and of change in Cys40 reactivity. The demonstration of multiple intermediates and pathways for unfolding indicates that protein unfolding reactions can be as complex as protein folding reactions.  相似文献   

20.
Ramos CH  Weisbuch S  Jamin M 《Biochemistry》2007,46(14):4379-4389
The sperm whale apomyoglobin pH 4 folding intermediate exists in two forms, Ia and Ib, that mimic transient kinetic intermediates in the folding of the native protein at pH 6. To characterize the nature of the kinetic barrier that controls the formation of the earliest intermediate Ia, we have investigated the effects of small viscogenic cosolvents on its folding and unfolding kinetics. The kinetics are measurable by stopped-flow fluorescence and follow a cooperative two-state model in the absence and presence of cosolvents. Small cosolvents stabilize Ia, but, by applying the isostability test to separate the viscogenic effect of the cosolvent from its stabilizing effect, we found that, in both folding and unfolding conditions, the apparent rate constant decreases when solvent viscosity increases. The unitary inverse dependence of the apparent rate constant on solvent viscosity indicates a diffusion-controlled reaction. This result is consistent with the hypothesis that folding of the apomyoglobin pH 4 intermediate obeys a diffusion-collision model. Additionally, the temperature dependence of the reaction rate at constant viscosity indicates that the formation of Ia is also controlled by an energy barrier. Linear free energy relationships show that the transition state of the U <==> Ia reaction is compact and buries 45% of the surface area that is buried in native apomyoglobin. We conclude that the transition state of the U <==> Ia reaction resembles that for the formation of native proteins; namely, it is dry and its compactness is closer to that of the folded (Ia) form than of the unfolded form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号