首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The complexes forming between the alternative sigma factor protein sigma N (sigma 54), its holoenzyme and promoter DNA were analysed using the hydroxyl radical probe and by photochemical footprinting of bromouridine-substituted DNA. Close contacts between the promoter, sigma N and its holoenzyme appear to be restricted predominantly to one face of the DNA helix, extending from -31 to -5. They all appear attributable to sigma N and no extra close contacts from the core RNA polymerase subunits in the holoenzyme-promoter DNA complex were detected. We suggest that the apparent absence of close core RNA polymerase contacts in the region of the promoter DNA to be melted during open complex formation is important for maintaining the closed complex. Results of the hydroxyl radical footprinting imply that sigma N makes multiple DNA backbone contacts across and beyond the -12, -24 consensus promoter elements, and the photochemical footprints indicate that consensus thymidine residues contribute important major groove contacts to sigma N. Formation of the open complex is shown to involve a major structural transition in the DNA contacted by sigma N, establishing a direct role for sigma N in formation of the activated promoter complex.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Thesigmasubunit of RNA polymerase determines promoter recognition and catalyzes DNA strand separation. The -35 promoter region is recognized by a helix-turn-helix motif in region 4, while the -10 region is specified, at least in part, by an amphipathic helix in region 2. We have proposed that conserved aromatic residues insigmaregion 2.3 interact with the non-template strand of the -10 element to drive open complex formation. We now report that Bacillus subtilis sigmaA holoenzyme, but neither core nor sigmaA alone, binds with high selectivity to single-stranded (ss) DNA containing the non-template -10 consensus sequence. UV irradiation of holoenzyme-ssDNA complexes efficiently crosslinks sigmaA to DNA and protease mapping supports a primary contact site in or near region 2. Several mutations in sigmaA region 2.3, shown previously to impair promoter melting, affect ssDNA binding: Y184A decreases binding selectivity, while Y189A and W193A decrease the efficiency of photocrosslinking. These results support a model in which these aromatic amino acids are juxtaposed to ssDNA, consistent with their demonstrated role in stabilizing the open complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号