首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Catalytic Mechanism of Nucleoside Diphosphate Kinases   总被引:8,自引:0,他引:8  
Nucleoside diphosphate kinases catalyze the reversible transfer of the phosphate of nucleosidetriphosphates to nucleoside diphosphates. This minireview presents recent advances inunderstanding the reaction mechanism using steady-state and fast kinetic studies, X-raycrystallography, and site-directed mutagenesis. We also briefly discuss the physiological relevance ofin vitro studies.  相似文献   

2.
Nucleoside (NDP) diphosphate kinases are oligomeric enzymes. Most are hexameric, but somebacterial enzymes are tetrameric. Hexamers and tetramers are constructed by assemblingidentical dimers. The hexameric structure is important for protein stability, as demonstratedby studies with natural mutants (the Killer-of-prune mutant ofDrosophila NDP kinase andthe S120G mutant of the human NDP kinase A in neuroblastomas) and with mutants obtainedby site-directed mutagenesis. It is also essential for enzymic activity. The function of the tetrameric structure is unclear.  相似文献   

3.
Tenofovir is an acyclic phosphonate analog of deoxyadenylate used in AIDS and hepatitis B therapy. We find that tenofovir diphosphate, its active form, can be produced by human nucleoside diphosphate kinase (NDPK), but with low efficiency, and that creatine kinase is significantly more active. The 1.65 Å x-ray structure of NDPK in complex with tenofovir mono- and diphosphate shows that the analogs bind at the same site as natural nucleotides, but in a different conformation, and make only a subset of the Van der Waals and polar interactions made by natural substrates, consistent with their comparatively low affinity for the enzyme.  相似文献   

4.
NM23/Nucleoside Diphosphate Kinase and Signal Transduction   总被引:6,自引:0,他引:6  
NM23s (or NDP kinases) regulate a fascinating variety of cellular activities, includingproliferation, development, and differentiation. All these processes are modulated by external stimuli,leading to the idea that this family of proteins modulates transmembrane signaling pathways.This review summarizes the evidence indicating that NM23/NDP kinases participate intransmembrane signaling in eukaryotic cells and discusses the molecular mechanisms proposed toaccount for these actions.  相似文献   

5.
近年来,鲍曼不动杆菌(Acinetobacter baumannii)在医院里越来越受到人们的关注,尤其是在重症监护病房(ICUs).它以强大的多重耐药性(multiresistance)而闻名.核苷二磷酸激酶(nucleoside diphosphate kinase,NDK)是一种进化上非常保守的酶,它能催化核苷之间磷酸基团的转移.我们解析了鲍曼不动杆菌NDK野生型和C端氨基酸残基Arg141-Thr142-Arg143(RTR)截短突变体的结构.通过和黄色黏菌(Myxococcus xanthus)NDK的三维结构进行比较,推断鲍曼不动杆菌NDK的催化机制和黄色黏菌类似.通过激酶活性实验和圆二色谱实验,发现鲍曼不动杆菌NDK E28A突变体二级结构发生了改变,从而导致蛋白催化活性降低,说明Glu28是鲍曼不动杆菌NDK结构中非常关键的氨基酸残基.鲍曼不动杆菌NDK C端RTR截短突变体显示出催化活性极大的降低,这可能与C端RTR残基介导的二体间相互作用有关.虽然RTR截短突变体中的Lys33伸向了和野生型中不同的方向,和Val15产生相互作用弥补了一部分因为RTR截短丢失的相互作用,维持了RTR截短突变体和野生型类似的结构.但是,Lys33产生的相互作用依然太弱,不足以维持蛋白在催化的动态过程中整体结构的高效转换.我们解析的鲍曼不动杆菌NDK晶体高分辨率结构将有助于科学家设计针对鲍曼不动杆菌的药物.  相似文献   

6.
Nucleoside diphosphate kinase (NDP kinase) catalyzes the transfer of terminal phosphate from nucleotide triphosphates (e.g. ATP) to nucleotide diphosphates (e.g. GDP) to yield nucleotide triphosphates (e.g. GTP). Since guanine nucleotides play critical role(s) in GTP-binding protein (G-protein)-mediated signal transduction mechanisms in retina, we quantitated NDP kinase activity in subcellular fraction-derived from normal rat retina. A greater than 85% of the total specific activity was present in the soluble fraction, which was stimulated (up to 7 fold) by 2 mM magnesium. NDP kinase exhibited saturation kinetics towards di- and tri-phosphate substrates, and was inhibited by known inhibitors of NDP kinase, uridine diphosphate (UDP) or cromoglycate (CRG). We have previously reported significant abnormalities in the activation of G-proteins in streptozotocin (STZ)-diabetic rat retina (Kowluru et al. Diabetologia 35:624–631, 1992). Since NDP kinase hasbeen implicated in direct interaction with and/or activation of various G-proteins, we quantitated both basal and magnesium-stimulated NDP kinase activity in soluble and particulate fractions of retina derived from STZ-diabetic rats to examine whether abnormalities in G-protein function in diabetes are attributable to alterations in retinal NDP kinase. There was no effect of diabetes either on the basal or the magnesium-activated retinal NDP kinase activity. This study represents the first characterization of NDP kinase activity in rat retina, and suggests that in diabetes, this enzyme may not be rate-limiting and/or causal for the observed alterations in retinal G-protein functions.  相似文献   

7.
8.
核苷二磷酸激酶A的异构及其分子机制   总被引:1,自引:0,他引:1  
对核苷二磷酸激酶A(NDPKA)的异构及其分子机制进行研究.还原和非还原SDSPAGE观察重组人核苷二磷酸激酶A(rhNDPKA)的异构;RPHPLC分析rhNDPKA异构体的反相色谱行为,并测定rhNDPKA异构体的酶活性;多角度激光散射法测定rhNDPKA异构体在溶液中的表观分子量;飞行质谱分析异构体的质量肽谱.结果发现,rhNDPKA在非还原SDSPAGE上表现为4条带,对应于NDPKA的氧化型、还原型、氧化型二聚体和还原型二聚体,其分子量分别为18.1kD、21.3kD、35.2kD和38.3kD.RPHPLC发现,还原型rhNDPKA和氧化型rhNDPKA疏水性有差异.新鲜制备的rhNDPKA在纯水溶液中,经空气氧化后,逐渐由还原型向氧化型过渡,而还原剂或生理盐水可使rhNDPKA稳定于还原型或氧化型.酶活测定结果表明,还原型rhNDPKA比活性为1965±166Umg,氧化型rhNDPKA比活性为974±53Umg.多角度激光散射检测发现,还原型rhNDPKA在溶液中仍可形成六聚体.质量肽谱结果证明,在氧化型rhNDPKA中,C4和C145位巯基形成二硫键,而C109位巯基游离存在.根据本文所确定的NDPKA单体中的二硫键位置,推导出rhNDPKA单体异构体和二聚体异构体的变构原理,这为进一步研究NDPKA的多能性调节机制打下了良好基础.  相似文献   

9.
The abnormal wing discs gene of Drosophila encodes a soluble protein with nucleosidediphosphate kinase activity. This enzymic activity is necessary for the biological function ofthe abnormal wing discs gene product. Complete loss of function, i.e., null, mutations causelethality after the larval stage. Most larval organs in such null mutant larvae appear to benormal, but the imaginal discs are small and incapable of normal differentiation.Killer-of-prune is a neomorphic mutation in the abnormal wing discs gene. It causes dominant lethalityin larvae that lack prune gene activity. The Killer-of-prune mutant protein may have alteredsubstrate specificity. Null mutant larvae have a low level of nucleoside diphosphate kinaseactivity. This suggests that there may be additional Drosophila genes that encode proteinswith nucleoside dipthosphate kinase activity. Candidate genes have been found in theDrosophila genome.  相似文献   

10.
重组人核苷二磷酸激酶A的理化性质   总被引:3,自引:0,他引:3  
对重组人核苷二磷酸激酶A(rhNDPK-A)进行纯化,并对重组产物的理化性质及在溶液中的聚合状态进行鉴定。NDPK-A工程菌发酵后的菌体高压匀浆,然后微孔过滤、超滤浓缩,所得样品经DEAE阴离子交换、Cibacron Blue亲和层析、分子筛层析三步纯化后,以SDS-PAGE和RP-HPLC分析纯化产物的纯度,RP-HPLC测定酶活性。合格制品以基质辅助激光解析飞行时间质谱测定相对分子质量(MW);Edman降解法测定N末端序列;多角度激光散射法测定重组产物在溶液中的表观分子量。结果表明,rhNDPK-A纯化产物的SDS-PAGE纯度为97.3%,RP-HPLC纯度为99.2%;比活性为(900±100)u/mg;单体相对分子质量为17017,与NDPKA分子量理论值相差132。测序结果表明,rhNDPK-A N末端缺失Met残基,其理论分子量为17017,与飞行质谱测定结果完全一致。表观分子量测定结果表明,rhNDPK-A在溶液中形成六聚体,表观分子量为102kD。上述结果说明, NDPK-A重组产物具与天然产物相同的自发形成六聚体性质,这为NDPK-A新药开发和机理研究打下了良好基础。  相似文献   

11.
This article summarizes research from our laboratory on two aspects of the biochemistry ofnucleoside diphosphate kinase from Escherichia coli—first, its interactions with several T4bacteriophage-coded enzymes, as part of a multienzyme complex for deoxyribonucleosidetriphosphate biosynthesis. We identify some of the specific interactions and discuss whetherthe complex is linked physically or functionally with the T4 DNA replicationmachinery, orreplisome. Second, we discuss phenotypes of an E. coli mutant strain carrying a targeteddeletion of ndk, the structural gene for nucleoside diphosphate kinase. How do bacteria lackingthis essential housekeeping enzyme synthesize nucleoside triphosphates? In view of the specificinteractions of nucleoside diphosphate kinase with T4 enzymes of DNA metabolism, howdoes T4 multiply after infection of this host? Finally, the ndk disruption strain has highlybiased nucleoside triphosphate pools, including elevations of the CTP and dCTP pools of7- and 23-fold, respectively. Accompanied by these biased nucleotide pools is a strong mutatorphenotype. What is the biochemical basis for the pool abnormalities and what are the mutagenicmechanisms? We conclude with brief references to related work in other laboratories.  相似文献   

12.
In this paper, we studied the interaction of the human isoform B of nucleoside diphosphatekinase (NDP kinase B) with the nuclease hypersensitive element (NHE) present in the promoterelement of the c-myc oncogene. The DNA-binding properties of NDP kinase B and otherNDP kinases are compared and the nucleotide requirement for binding are discussed. Usingquantitative methods, we identified the DNA-binding sites on the protein and we proposed astructural model for a complex of one hexameric NDP kinase B with an oligonucleotide.  相似文献   

13.
In etiolated seedlings of Pisum sativum and leaves of Arabidopsis thaliana, in vivo ethylene treatment resulted in an increase in in vitro phosphorylation of 17 kD (P. sativum) or 16 and 17 kD (A. thaliana) polypeptides. These polypeptides were identified as nucleoside diphosphate kinase (NDPK) based on both biochemical properties and interaction with antibodies against NDPK from P. sativum. Using the receptor-directed antagonist of ethylene action 2,5-norbornadiene and the ethylene-insensitive mutants of A. thaliana etr1-1 and eti5, ethylene specificity and receptor dependence of NDPK phosphorylation have been demonstrated. In pea epicotyls, ethylene treatment also led to increase in nucleoside transferase activity unlike in A. thaliana leaves. The increases in nucleoside transferase activity and NDPK phosphorylation were very rapid and transient. The results suggest a role for NDPK as a possible component of the ethylene signal transduction chain.  相似文献   

14.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

15.
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site.  相似文献   

16.
Nm23 was the first metastasis suppressor gene identified. This gene encodes a NDP kinase that also exhibits other properties like histidine protein kinase and interactions with proteins and DNA. The S120G mutant of NDPK-A has been identified in aggressive neuroblastomas and has been found to reduce the metastasis suppressor effect of Nm23. In order to understand the differences between the wild type and the S120G mutant, we have determined the structure of both mutant and wild type NDPK-A in complex with ADP. Our results reveal that there are no significant changes between the two enzyme versions even in the surroundings of the catalytic histidine that is required for NDP kinase activity. This suggests that the S120G mutation may affect an other protein property than NDP kinase activity.  相似文献   

17.
The deoxyribonucleoside kinase of Drosophila melanogaster (Dm‐dNK) has a broad substrate specificity and a higher catalytic rate than other known deoxyribonucleoside kinases. Therefore it is a natural candidate for possible use as a suicide gene in combined gene/chemotherapy of cancer. We have performed site directed mutagenesis and tested different truncated forms of the enzyme in order to increase the affinity for ganciclovir.  相似文献   

18.

The Drosophila melanogaster deoxynucleoside kinase gene was introduced into HeLa cells with cationic lipids to allow its transient expression, and cytotoxic effects of several nucleoside analogs in the transfected cells were examined. Of the analogs tested, cytotoxicities of 1-β-D-arabinofuranosylcytosine (araC), 5-fluorodeoxyuridine (FUdR), and 1-(2-deoxy-2-methylene-β-D-erythro-pentofuranosyl)cytosine (DMDC) were increased by the deoxynucleoside kinase gene. These results suggest that the combination of the transient expression of the Drosophila deoxynucleoside kinase gene and these nucleoside analogs is a candidate for the suicide gene therapy.  相似文献   

19.
Abstract

The effects of components of the transition state analog (creatine, MgADP, planar anion) on the kinetics and conformation of creatine kinase isozyme BB from monkey brain was studied. From analysis of the reaction time course using the pH stat assay, it was shown that during accumulation of the reaction products (ADP and creatine phosphate), among several anions added, nitrate proved the most effective in inhibiting catalytic activity. Maximum inhibition (77%) was achieved with 50 mM nitrate. The Km for ATP was 0.48 mM and in the presence of 2.5 mM nitrate, 2.2 mM; for ATP in the presence of the dead-end complex, creatine and ADP, the apparent Km was 2.0 mM and theK wasO.16mM; in the presence of the transition state analog, MgADP + NO3” + creatine, the K was estimated to be 0.04 mM.

Ultraviolet difference spectra of creatine kinase revealed significant differences only in the presence of the complete mixture of the components of the transition state analog. Comparison of gel nitration elution profiles for creatine kinase in the absence and presence of the complete mixture of components of the transition state analog did not reveal any differences in elution volume. Addition of components of the transition state analog to creatine kinase resulted in only a marginal change in intrinsic fluorescence. The presence of the components of the transition state analog increased the rate of reactivity of the enzyme with trinitrobenzenesulfonic acid from k = 6.06 ±0.05M?1min to 6.96 ± 0.11 M?1min?1.

This study provides evidence that, like the muscle isozyme of creatine kinase, the brain form is effectively inhibited by the transition state analog. However, the inhibition is accompanied by small changes in the overall conformation of the protein. This adds to the evidence that the functional differences of the isozymic forms of creatine kinase cannot be attributed to differences in kinetic properties.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel mutations cause cystic fibrosis lung disease. A better understanding of CFTR regulatory mechanisms could suggest new therapeutic strategies. AMP-activated protein kinase (AMPK) binds to and phosphorylates CFTR, attenuating PKA-activated CFTR gating. However, the requirement for AMPK binding to CFTR and the potential role of other proteins in this regulation are unclear. We report that nucleoside diphosphate kinase A (NDPK-A) interacts with both AMPK and CFTR in overlay blots of airway epithelial cell lysates. Binding studies in Xenopus oocytes and transfected HEK-293 cells revealed that a CFTR peptide fragment that binds AMPK (CFTR-1420-57) disrupted the AMPK-CFTR interaction. Introduction of CFTR-1420-57 into human bronchial Calu-3 cells enhanced forskolin-stimulated whole cell conductance in patch clamp measurements. Similarly, injection of CFTR-1420-57 into Xenopus oocytes blocked the inhibition of cAMP-stimulated CFTR conductance by AMPK in two-electrode voltage clamp studies. AMPK also inhibited CFTR conductance with co-expression of WT NDPK-A in two-electrode voltage clamp studies, but co-expression of a catalytically inactive H118F mutant or various Ser-120 NDPK-A mutants prevented this inhibition. In vitro phosphorylation of WT NDPK-A was enhanced by purified active AMPK, but phosphorylation was prevented in H118F and phosphomimic Ser-120 NDPK-A mutants. AMPK does not appear to phosphorylate NDPK-A directly but rather promotes an NDPK-A autophosphorylation event that involves His-118 and Ser-120. Taken together, these results suggest that NDPK-A exists in a functional cellular complex with AMPK and CFTR in airway epithelia, and NDPK-A catalytic function is required for the AMPK-dependent regulation of CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号