首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific insulin-like growth factor I (IGF-I) receptors on a human erythroleukemia cell line (K-562 cells) were identified and characterized. [125I]-IGF-I specifically bound to K-562 cells and the binding was displaced by unlabeled IGF-I in a dose dependent manner, and half maximal inhibition of the binding was observed at 7 ng/ml IGF-I. [125I]IGF-I binding to the cells was displaced by multiplication stimulating activity (MSA) and by porcine insulin, with potencies that were 10, and 100 times less than that of IGF-I, respectively. By an affinity labeling technique, IGF type I receptors were found to be present in the K-562 cells. When the cells were differentiated by hemin (40 microM), specific binding of [125I]IGF-I to the cells was decreased to 56.8 +/- 5.0% of that for undifferentiated cells. Furthermore, at physiological concentration of IGF-I stimulated thymidine incorporation into DNA and increased the number of cells. These data demonstrate that K-562 cells have specific receptors for IGF-I which may be functionally important for these cells, and that the IGF-I binding sites decrease with cell differentiation. This system might be useful in studying the interaction of IGF-I receptors.  相似文献   

2.
Specific insulin-like growth factor I (IGF-I) receptors on the Madin-Darby canine kidney (MDCK) cell line were identified and characterized. [125I]IGF-I specifically bound to the cells, but [125I]insulin bindings to the cells was minimal. Unlabeled IGF-I displaced both the IGF-I and insulin bindings with potencies that were 100 and 10 times as great as insulin. By an affinity labeling technique, IGF type I receptors were present in the MDCK cells. IGF-I stimulated DNA synthesis and cell proliferation at physiological concentrations. On the other hand, insulin had a little effect on DNA synthesis. These data suggest that IGF type I receptors as demonstrated in MDCK cells are involved in DNA synthesis and cell proliferation.  相似文献   

3.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

4.
The human-derived promyelocytic leukemia cell line, HL-60, is known to differentiate into mature myeloid cells in the presence of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). We investigated differentiation by monitoring 1,25(OH)2D3-exposed HL-60 cells for phagocytic activity, ability to reduce nitroblue tetrazolium, binding of the chemotaxin N-formyl-methionyl-leucyl-[3H]phenylalanine, development of nonspecific acid esterase activity, and morphological maturation of Wright-Giemsa-stained cells. 1,25(OH)2D3 concentrations as low as 10(-10) M caused significant development of phagocytosis, nitroblue tetrazolium reduction, and the emergence of differentiated myeloid cells that had morphological characteristics of both metamyelocytes and monocytes. These cells were conclusively identified as monocytes/macrophages based upon their adherence to the plastic flasks and their content of the macrophage-characteristic nonspecific acid esterase enzyme. The estimated ED50 for 1,25(OH)2D3-induced differentiation based upon nitroblue tetrazolium reduction and N-formyl-methionyl-leucyl-[3H]phenylalanine binding was 5.7 X 10(-9) M. HL-60 cells exhibited a complex growth response with various levels of 1,25(OH)2D3: less than or equal to 10(-10) M had no detectable effect, 10(-9) M stimulated growth, and greater than or equal to 10(-8) M sharply inhibited proliferation. We also detected and quantitated the specific receptor for 1,25(OH)2D3 in HL-60 and HL-60 Blast, a sub-clone resistant to the growth and differentiation effects of 1,25(OH)2D3. The receptor in both lines was characterized as a DNA-binding protein that migrated at 3.3S on high-salt sucrose gradients. Unequivocal identification was provided by selective dissociation of the 1,25(OH)2D3-receptor complex with the mercurial reagent, p-chloromercuribenzenesulfonic acid, and by a shift in its sedimentation position upon complexing with anti-receptor monoclonal antibody. On the basis of labeling of whole cells with 1,25(OH)2[3H]D3 in culture, we found that HL-60 contains approximately 4,000 1,25(OH)2D3 receptor molecules per cell, while the nonresponsive HL-60 Blast is endowed with approximately 8% of that number. The concentration of 1,25(OH)2D3 (5 X 10(-9) M) in complete culture medium, which facilitates the saturation of receptors in HL-60 cells, is virtually identical to the ED50 for the sterol's induction of differentiation. This correspondence, plus the resistance of the relatively receptor-poor HL-60 Blast, indicates that 1,25(OH)2D3-induced differentiation of HL-60 cells to monocytes/macrophages is occurring via receptor-mediated events.  相似文献   

5.
We have investigated the reason for the lack of specific 1,25-dihydroxyvitamin D-3 binding activity in extracts of ATCC HL-60 cells. Although intact ATCC HL-60 cells specifically and saturably take up 1,25-dihydroxy[3H]vitamin D-3, whole cell extracts have little or no specific binding of 1,25-dihydroxyvitamin D-3. The absence of specific binding can now be explained by the action of a serine proteinase in these cells. When diisopropylfluorophosphate (DFP), a potent inhibitor of serine proteinase, is added to the buffer used for extraction, specific binding of 1,25-dihydroxy[3H]vitamin D-3 in the extract is observed. The loss of specific binding could not be prevented by hydrolyzed DFP or other serine proteinase inhibitors, such as phenylmethylsulfonylfluoride, benzamidine and aprotinin. The proteolytic activity from ATCC cells also destroyed specific 1,25-dihydroxy[3H]vitamin D-3 binding in high-salt extracts from pig intestinal nuclei or from another HL-60 cell line (LG HL-60 cells). However, the proteinase did not affect the levels of the specific binding in these preparations if the receptor was occupied with 1,25-dihydroxy[3H]vitamin D-3 prior to exposure to the proteinase. The binding and sedimentation characteristics of the receptors from various sources were not changed by the presence of DFP. The Kd of the receptor in ATCC HL-60 cells is 1.2.10(-10) M, which is identical to that in the LG HL-60 cells. The 1,25-dihydroxy[3H]vitamin D-3 receptor complex from the ATCC cells sediments as a single 3.5 S component and elutes from DNA-Sephadex column in two peaks at 0.09 and 0.15 M KCl. The material eluting at 0.15 M KCl has the same DNA-binding activity as preparations from pig intestine or LG HL-60 cells. Immunoprecipitation studies demonstrated that monoclonal antibodies to the pig receptor, IVG8C11, quantitatively precipitate the 1,25-dihydroxy[3H]vitamin D-3-binding activity from ATCC HL-60 cells as well as that from LG HL-60 cells or pig intestinal nuclei. Therefore, the previous failure to demonstrate the 1,25-dihydroxyvitamin D-3 receptor in ATCC HL-60 cells is because of the presence of a potent serine proteinase and not because of an abnormal or absent receptor.  相似文献   

6.
In this study the relationship between cell binding of phorbol 12,13-dibutyrate (PDBu) and induction of differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was examined. Binding of [3H]PDBu increased within 12 h of 1,25-(OH)2D3 treatment, and a 60-130% increase in [3H]PDBu receptor levels was observed within 24 h. By 48 h, however, [3H]PDBu binding was not different from control. Scatchard analysis of [3H]PDBu binding showed no statistical differences in Kd value (Kd approximately equal to 30 nM) between 1,25-(OH)2D3-treated and control cells 22 h post-treatment; however, a 2-fold increase in Bmax was observed in treated (338 +/- 24 pmol/10(9) cells) compared to control cultures (170 +/- 14 pmol/10(9) cells). Stimulation of [3H]PDBu binding was dependent on 1,25-(OH)2D3 concentrations over a range of 1-100 nM. Homogenates from 1,25-(OH)2D3-treated HL-60 cells also demonstrated an increase (70%) in [3H]PDBu binding to the Ca2+/phospholipid-dependent enzyme protein kinase C as assessed by incubation of cell homogenates with [3H]PDBu in the presence of saturating phosphatidylserine and calcium concentrations. This suggests that the increase in [3H]PDBu binding cannot be entirely explained by modulation of the latter two agents. Cycloheximide (5 microM), an inhibitor of protein synthesis, ablated the 1,25-(OH)2D3-stimulated increase in [3H]PDBu binding to intact HL-60 cells. These data demonstrate that an increase in [3H]PDBu binding occurs early in the course of 1,25-(OH)2D3-induced differentiation, results from an increased number of [3H]PDBu-binding site, and is dependent on protein synthesis.  相似文献   

7.
We have reevaluated IGF binding specificity to membrane receptors in rabbit mammary gland (RMG) and hypophysectomized rat liver (HRL) using recombinant DNA-derived and synthetic analogues of human IGF-I and highly purified IGF-II. SDS-PAGE demonstrated that [125I]IGF-I bound to type-I IGF receptors in RMG; this binding was inhibited in a similar fashion by the IGF-I analogues (IC50 = 10 ng/ml) and to a lesser extent by IGF-II (IC50 = 60 ng/ml). [125I]IGF-II bound to type-II IGF receptors in both RMG and HRL. The IC50 for IGF-II was 9 and 3 ng/ml with RMG and HRL, respectively. At a dose as high as 1 microgram/ml, IGF-I analogues inhibited less than 20% of [125I]IGF-II binding. These results suggest that IGF-I has little or no affinity for type-II IGF receptors.  相似文献   

8.
The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R(3) -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were performed to distinguish [(125) I]IGF-I binding to IGF-I receptors and IGFBPs. Specific [(125) I]IGF-I binding in brain regions and the posterior pituitary was completely displaced by DES(1-3)IGF-I and R(3) -IGF-I, indicating binding to IGF-I receptors. In contrast, [(125) I]IGF-I binding in the anterior pituitary was not displaced by DES(1-3)IGF-I and R(3) -IGF-I, suggesting binding to an IGF-binding site that is different from the IGF-I receptor. Binding affinity of IGF-I to this site was about 10-fold lower than for the IGF-I receptor. Using western immunoblotting we were also unable to detect IGF-I receptors in human anterior pituitary. Instead, western immunoblotting and immunoprecipitation experiments showed a 150-kDa IGFBP-3-acid labile subunit (ALS) complex in the anterior pituitary and not in the posterior pituitary and other brain regions. RT-PCR experiments showed the expression of ALS mRNA in human anterior pituitary indicating that the anterior pituitary synthesizes ALS. In the brain regions and posterior pituitary, IGFBP-3 was easily washed away during pre-incubation procedures as used in the [(125) I]IGF-I binding experiments. In contrast, the IGFBP-3 complex in the anterior pituitary could not be removed by these washing procedures. Our results indicate that the human anterior pituitary contains a not previously described tightly cell membrane-bound 150-kDa IGFBP-3-ALS complex that is absent in brain and posterior pituitary.  相似文献   

9.
Malignant cells were assayed for 1,25(OH)2D3 receptors and for the effects of 1,25(OH)2D3 on cell proliferation. The established lines studied were human promyelocytic leukemia (HL-60), T-cell lymphocytic leukemias (Molt-4, RPMI-8402, CEM), mouse leukemia (L1210), breast cancers (HT-39 and MCF-7) and a glioma (C-6) cultures. A TSK 3000 SW (0.75 X 60 cm) HPLC size exclusion column was used to characterize specific 1,25(OH)2D3 binding. We show for the first time that this column is capable of resolving the 3.2-3.5S 1,25(OH)2D3 mammalian receptor (Rs = 32 A) from the 5.5-6.0S form of the mammalian serum 25(OH)D3 transport receptor (Rs = 40 A). The molecular size of the 1,25(OH)2D3 receptors from these cancer cell lines was identical to that from rabbit intestine. HT-39, HL-60, MCF-7, Molt-4, C-6, RPMI-8402 and L1210 cells demonstrated specific 1,25(OH)2[3H]D3 binding (120, 90, 80, 45, 30 and 18 fmoles of sites/mg protein, respectively). Receptors were not detected in the CEM line. 1,25(OH)2D3 inhibited cell proliferation of HT-39, HL-60, MCF-7 and Molt-4 cells by 20% to 70%. In contrast, mouse leukemia (L1210) cells were stimulated to proliferate by this hormone. Proliferation of RPMI and CEM cells was not affected by 1,25(OH)2D3. We demonstrate that size-exclusion HPLC of 1,25(OH)2D3 binding proteins from mammalian intestine and cancer cells provided a rapid method for identification of specific 1,25(OH)2D3 receptors. Furthermore, in the cells studied, the presence and concentration of 1,25(OH)2D3 receptors qualitatively predicted the potency of this hormone to alter cell proliferation. We believe this assay will be useful for rapid analysis of human tumor receptor concentrations.  相似文献   

10.
The incubation of HL-60 human promyelocytic leukemia cells for 7 days with 100 nM 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced differentiation into monocyte-like cells, as assessed by morphologic and biochemical characteristics. Stereospecific receptors for leukotriene B4 (LTB4) developed on the surface of the HL-60 cell-derived monocytes that had the capacity to transduce LTB4 stimulation of a transient increase in the cytosolic concentration of calcium ([Ca+2]in). HL-60 cell-derived monocytes, but not undifferentiated HL-60 cells, expressed a high affinity subset of 6400 +/- 3700 receptors per cell with a dissociation constant (Kd) of 2.3 +/- 1 nM (mean +/- SD, n = 3) and a low affinity subset of approximately 2.2 X 10(6) receptors per cell with an apparent Kd of 680 +/- 410 nM. Derivatives of LTB4 inhibited the binding of [3H]LTB4 to HL-60 cell-derived monocytes with a rank order of potency of LTB4 greater than 20-OH-LTB4 greater than 3-aminopropyl amide-LTB4, which is similar to the order for LTB4 receptors of human blood PMNL. In contrast, leukotrienes C4 and D4 and formyl-methionyl chemotactic peptides did not inhibit the binding of [3H] LTB4, which demonstrates the specificity of these receptors for isomers of 5,12-dihydroxy-eicosatetraenoic acid. LTB4 stimulated an increase in [Ca+2]in in HL-60 cell-derived monocytes which reached 50% of the maximal level at an LTB4 concentration of 0.5 nM (EC50). Preincubation of HL-60 cell-derived monocytes with 10 nM LTB4 resulted in a selective loss of high affinity receptors, as assessed by binding of [3H]LTB4, and a 200-fold increase in the EC50 for stimulation by LTB4 of increases in [Ca+2]in, without alterations in either the low affinity receptors for LTB4 or the responsiveness of [Ca+2]in to formyl-methionyl chemotactic peptides. HL-60 cells that are induced to differentiate into monocytes thus develop stereospecific receptors for LTB4 with binding and transductional characteristics similar to those of human blood PMNL.  相似文献   

11.
Promyelocytic leukemia HL-60 cells can be induced to differentiate to granulocytes, under the conditions of cultures in the presence of dimethyl sulfoxide (DMSO). Examination of the binding of 125I-labeled hemopexin to DMSO-induced HL-60 cells showed that the density of hemopexin receptors on the induced-cells was 1.35 times that on the uninduced cells. We proposed that a specific receptor for hemopexin was present on the plasma membranes of polymorphonuclear leukocytes (PMNs). The binding of human [125I]hemopexin to human PMNs at 4 degrees C was saturable with time and with increasing concentrations of [125I]hemopexin. Scatchard analysis of the binding revealed the presence of approximately 5.7 x 10(4) binding sites per cell with an apparent dissociation constant (Kd) of 2.3 x 10(-9) M. [125I]Hemopexin was rapidly bound then dissociated from the cells after the release of heme, when the cells were incubated with radioactive hemopexin at 37 degrees C. Incubation of the cells with the [59Fe]heme-hemopexin complex resulted in an accumulation of [59Fe]heme in the cells, with a temperature of 37 degrees C but not that of 4 degrees C. Ouabain or NaF inhibited not only the binding of [125I]hemopexin to PMNs but also the uptake of [59Fe]heme from [59Fe]heme hemopexin by the cells. Neither NH4 Cl nor chloroquine inhibited the uptake. Detergent extracts of 125I-labeled PMNs were incubated with a hemopexin-coupled Sepharose CL-6B. A polypeptide reacting with hemopexin-Sepharose was estimated to have a molecular weight of 80,000, as determined by polyacrylamide gel electrophoresis, in the presence of sodium dodecylsulfate. We propose that PMNs take up heme from hemopexin, as mediated by the 80,000 dalton receptor for hemopexin.  相似文献   

12.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

13.
We report here the first evidence of insulin-like growth factor-I (IGF-I) binding sites in human fetal and adult adrenal glands, obtained at autopsy. Sections of tissue were incubated with 0.1 nM [125I]IGF-I and analyzed using [3H]Ultrofilm autoradiography with image analysis coupled to computerized microdensitometry. Specific binding sites of [125I]IGF-I were found to be localized in the definitive zone, fetal zone, and fetal medulla of the fetal adrenal glands. In the adult adrenal glands, the entire cortex and medulla were specifically labeled with [125I]IGF-I. Specific binding obtained at a concentration of 0.1 nM [125I]IGF-I to areas in the fetal and adult human adrenal glands was competitively displaced by unlabeled IGF-I, with an IC50 value of 0.34-2.54 nM, and 0.38-0.73 nM, respectively, whereas insulin was much less potent in displacing the binding. Acquisition of this knowledge will aid in studies on cell growth and steroid-catecholamines biosynthesis of the human adrenal gland.  相似文献   

14.
Macrophage Fc receptors (FcR) are essential for antibody-dependent cellular cytotoxicity and for optimal phagocytosis of opsonized particulate antigens. Culture in the presence of conditioned medium from mixed leukocyte cultures (MLC-CM) resulted in a dose- and time-dependent increase (up to 10-fold) in FcR-dependent binding of 125I-labeled IgG1 to promyelocytic HL-60 cells, macrophage-like U-937 cells, and normal cultured human monocytes. FcR increase in HL-60 cells was blocked by cycloheximide (100 microM) and was accompanied by a slight decrease in binding affinity. Since cell volume did not change, the increase in FcR probably represents an increase in the surface density of FcR sites. MLC-CM prepared with or without serum were equally effective in augmenting FcR sites, whereas only serum-containing MLC-CM caused morphologic change of U-937 and HL-60 cells.  相似文献   

15.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

16.
Abstract

Insulin and IGF-I receptors in G26–20 cells, derived from a mouse oligodendroglioma, and in RN-2 cells, derived from a rat Schwannoma, were characterized by specific binding to [125I]insulin and [125I]IGF-I respectively. In both cell lines, the Kd for insulin was 1.5 nM. Insulin receptor number was 33,000/cell for RN-2 cells and 17,000 receptors/ cell for G26–20 cells. RN-2 cells have 700,000 IGF-I receptors/cell with a Kd of 2 nM while G26–20 cells have 60,000 receptors/cell with an affinity of 4.9 nM. However, the independence of these two receptor populations in each cell type was equivocal since the subunit structure of these receptors appears identical by electrophoresis. In both cell lines, competition with insulin analogs for [125I]insulin binding demonstrated chicken insulin>insulin>IGF-I. Competition for [125I]IGF-I binding showed that IGF-I was approximately 85-fold more potent than insulin. Chicken insulin was ineffective at all concentrations. Thus, chicken insulin can be used as a specific ligand to unequivocally discriminate between IGF-I and insulin receptors and effects.  相似文献   

17.
Rat adrenal glands contain cell surface high-affinity receptors for several peptide hormones. Receptors for IGF-I were abundant in this tissue, but receptors for insulin were relatively scarce. The behavior of adrenal membrane IGF-I receptors in radioligand binding assays was similar to the behavior of IGF-I receptors from other tissues, with a KD congruent to 6.2 x 10(-9) M. Covalent cross-linking studies with [125I]IGF-I revealed an IGF-I receptor alpha-subunit with Mr congruent to 135,000 on dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions, as well as a smaller radiolabeled peptide, Mr = 116,000. In contrast, little binding of [125I]insulin to adrenal membranes was observed and no labeling occurred in cross-linking studies using [125I]insulin. These results contrast with the findings of whole-body autoradiographic studies that indicated substantial binding of [125I]insulin to adrenal glands and suggest that IGF-I, rather than insulin, may play a critical role in the growth and development of the adrenal gland.  相似文献   

18.
We have previously shown that insulin-like growth factor II (IGF-II) is produced by bone cells and that IGF-II stimulates cell proliferation and collagen synthesis in bone cells. We now extend these in vitro findings by demonstrating specific IGF-II binding to bone cells derived from newborn mouse calvaria and embryonic chick calvaria. The kinetics of [125I] IGF-II binding in embryonic chick calvaria cells showed time and temperature dependence. Scatchard analysis of [125I]IGF-II binding to chick calvaria cells showed an apparent Kd of 1.4 x 10(-10) M, with a calculated receptor site concentration of 40,000/cell. The specificity characteristics showed that IGF-II was significantly more potent than IGF-I or insulin in displacing IGF-II tracer. Competition for binding of [125I]IGF-II by unlabeled IGF-II showed a dose-dependent displacement between 0.5 and 25 ng/ml. Fifty percent displacement of [125I]IGF-II binding to chick and mouse calvarial cells was achieved at 1-2 ng/ml; 90% of specific binding of [125I]IGF-II was displaceable in the presence of 125 ng/ml of unlabeled IGF-II. IGF-I showed less than 5% cross reactivity for displacement of [125I]IGF-II binding to chick and mouse bone cells. Type II receptor inhibitory antibodies, R-II-PAB1 inhibited the binding of [125I]IGF-II to mouse bone cells and H-35 rat hepatoma cells (which contain type II but not type I receptors) in a dose-dependent manner. R-II-PAB1 also inhibited basal cell proliferation as well as IGF-II-, IGF-I-, and fibroblast growth factor (FGF)-induced cell proliferation in mouse bone cells. In chick calvaria bone cells and TE89 human osteosarcoma cells, R-II-PABI inhibited neither binding of [125I]IGF-II nor IGF-II-induced cell proliferation. These results together with our findings that IGF-II increased chick bone cell proliferation in the presence of maximal doses of IGF-I suggest that at least part of the mitogenic action of IGF-II is mediated through type II rather than type I receptors in bone cells.  相似文献   

19.
Insulin-like growth factor binding protein-3 (IGFBP-3) can inhibit cell growth by directly interacting with cells, as well as by forming complexes with IGF-I and IGF-II that prevent their growth-promoting activity. The present study examines the mechanism of inhibition of DNA synthesis by IGFBP-3 in CCL64 mink lung epithelial cells. DNA synthesis was measured by the incorporation of 5-bromo-2'-deoxyuridine, using an immunocolorimetric assay. Recombinant human IGFBP-3 (rh[N109D,N172D]IGFBP-3) inhibited DNA synthesis in proliferating and quiescent CCL64 cells. Inhibition was abolished by co-incubation of IGFBP-3 with a 20% molar excess of Leu(60)-IGF-I, a biologically inactive IGF-I analogue that binds to IGFBP-3 but not to IGF-I receptors. DNA synthesis was not inhibited by incubation with a preformed 1:1 molar complex of Leu(60)-IGF-I and IGFBP-3, indicating that only free IGFBP-3 inhibits CCL64 DNA synthesis. Inhibition by IGFBP-3 is not due to the formation of biologically inactive complexes with free IGF, since endogenous IGFs could not be detected in CCL64 conditioned media; any IGFs that might have been present could only have existed in inactive complexes, since endogenous IGFBPs were present in excess; and biologically active IGFs were not displaced from endogenous IGFBP complexes by Leu(60)-IGF-I. After incubation with CCL64 cells, (125)I-IGFBP-3 was covalently cross-linked to a major thick similar400-kDa complex. This complex co-migrated with a complex formed after incubation with (125)I-labeled transforming growth factor-beta (TGF-beta) that has been designated the type V TGF-beta receptor. (125)I-IGFBP-3 binding to the thick similar400-kDa receptor was inhibited by co-incubation with unlabeled IGF-I or Leu(60)-IGF-I. The ability of Leu(60)-IGF-I to decrease both the inhibition of DNA synthesis by IGFBP-3 and IGFBP-3 binding to the thick similar400-kDa receptor is consistent with the hypothesis that the thick similar400-kDa IGFBP-3 receptor mediates the inhibition of CCL64 DNA synthesis by IGFBP-3.  相似文献   

20.
A series of 24-homologated 1,25-dihydroxyvitamin D3 compounds have been chemically synthesized and studied with regard to their activity in inducing differentiation of human promyelocyte HL-60 cells to monocytes and in calcium mobilizing activity in vitamin D deficient rats. Homologation of 1,25-dihydroxyvitamin D3 or its delta 22 analogue by one or two carbons increases by 10-fold and three-carbon homologation reduces by half the activity in causing differentiation of HL-60. On the other hand, homologation causes a substantial decrease in in vivo calcium mobilization activity. The addition of each carbon at the 24-position decreases binding to the HL-60 receptor or rat intestinal receptor by 5-10-fold so that binding affinity of the trihomo compound for the receptors is 130 times less that of 1,25-dihydroxyvitamin D3. Thus, binding affinity for the receptor cannot account for the preferential activity of the 24-homologated compounds in inducing cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号