首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intracellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

2.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

3.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   

4.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

5.
The effects of the polyamines putrescine (PUT), spermidine (SPD), and spermidine (SPM) on the secretion of plasminogen activator (PA) and plasminogen activator inhibitor (PAI) were evaluated using cultured bovine aortic endothelial cells. All three polyamines enhanced PA secretion in a time- and dose-dependent manner, with a potency rank order of SPM greater than SPD greater than PUT. The PA stimulation required both RNA and protein synthesis, as evidenced by inhibition of polyamine-induced PA secretion by actinomycin D and cycloheximide. The inhibitors of polyamine biosynthesis methylglyoxal bis-(guanylhydrazone) (MGBG) and dl-(difluoromethyl) ornithine (DFMO) alone did not affect basal or polyamine-induced PA secretion, with the exception that MGBG reduced the effect of PUT. Polyamine-treated cells enhanced secretions of both tissue-type and urokinase-type PA. The results of the present study suggest that polyamines may play a role in the regulation of PA synthesis and secretion and that this function can be modified under pathophysiological conditions affecting cellular and tissue levels of polyamines.  相似文献   

6.
An attempt was made to identify some of the hormonal factors that control adventitious root formation in our Prunus avium micropropagation system in order to improve rooting in difficult-to-root genotypes. Changes in endogenous contents of free polyamines were determined at intervals during auxin-induced rooting of shoot cultures. Accumulation of putrescine and spermidine peaked between days 9 and 11. Spermine was only present in traces, Exogenously supplied putrescine or spermine (50-500 μM), in the presence of optimal or suboptimal levels of indolebutyric acid (IBA), had no effect on rooting percentage or root density, except for spermine at 500 μM. At this external concentration spermine caused a substantial accumulation in both free spermine and putrescine. The use of several inhibitors of polyamine biosynthesis, namely α-difluoromethylornithine (DFMO), α-difluoromethylarginine (DFMA), dicyclohexylammonium sulphate (DCHA) and methylglyoxal-bis-guanyl-hydrazone (MGBG) alone or in combination in the 0.1 to 5 μM range, resulted in an inhibition of rooting that was partially reversed by the addition of the corresponding polyamine. Cellular polyamine levels were significantly reduced by DFMO and DFMA but not by DCHA and MGBG, Labeled putrescine incorporation into spermidine increased somewhat in the presence of the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). A system based on [3,4-14C]methionine incorporation was used to measure ethylene synthesis by the in vitro cultured shoots. Label incorporation was drastically reduced by 10 μM AVG and increased 3.5-fold in the presence of 50 μM IBA with respect to controls (no IBA). Labeled methionine incorporation into spermidine increased to some extent when ethylene synthesis was inhibited by AVG. Adding the ethylene precursor 1-aminocyclopropane-l-carboxylic acid (ACC) to the rooting medium significantly inhibited rooting percentage; AVG caused the formation of a greater number of roots per shoot but delayed their growth. Supplying the shoots with both compounds resulted in an intermediate rooting response, in which both rooting percentage and root density were affected. These results indicate that polyamines may play a significant role at least in some stages of root formation. The polyamine and ethylene biosynthetic pathways seem to be competitive but under our conditions, the enhancement of one pathway when the other was inhibited, was not dramatic. Although IBA promoted ethylene synthesis, AVG, which drastically reduced it, also promoted root formation. Thus, the auxin effect on root induction cannot be directly related to its ability to enhance ethylene synthesis.  相似文献   

7.
The effect of the polyamine biosynthesis inhibitor alpha-difluoromethylornithine (DFMO) on the in vitro radiation response of Clone A human colon adenocarcinoma cells was investigated. Analysis of intracellular polyamine levels showed that exposure of Clone A cells to 1 mM DFMO for 96 h reduced putrescine and spermidine to nondetectable levels, while spermine was decreased by approximately 50%. This DFMO treatment protocol enhanced the radiosensitivity of Clone A cells, which was reflected by a decrease in both the Do and Dq. The addition of putrescine (1 mM) for the final 48 h of DFMO exposure restored polyamine levels and returned clone A radiosensitivity to that of control cells. These results indicate that polyamine depletion by DFMO sensitizes Clone A tumor cells to ionizing radiation.  相似文献   

8.
1. Inactivation of L-ornithine:2-oxoacid aminotransferase (OAT) by 5-fluoromethylornithine (5FMOrn), a specific inactivator of OAT, causes a great elevation of tissue ornithine (Orn) concentrations. 2. Inhibition of L-ornithine decarboxylase (ODC) by 2-difluoromethylornithine (DFMO) had no effect on Orn concentrations. 3. The combined administration of 5FMOrn and DFMO produced a 2- to 3-fold greater enhancement of tissue Orn concentrations than treatment with 5FMOrn alone. 4. The increase of tissue Orn concentrations had a long-lasting enhancing effect on polyamine metabolism. 5. In the brain this could be demonstrated by the elevation of putrescine and spermidine concentrations and the increase of spermidine turnover rate. 6. In visceral organs polyamine concentrations were not elevated because polyamines can be eliminated by transport. 7. In line with this notion is the fact that urinary polyamine excretion was increased for several days, even after a single dose of 5FMOrn. 8. Inhibitors of 4-aminobutyric acid:2-oxoglutarate aminotransferase which are also inactivators of OAT had the same effect on polyamine excretion as 5FMOrn.  相似文献   

9.
10.
Alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, was used to study the effect of polyamine depletion on delayed heat sensitization in Chinese hamster ovary cells (CHO). The cells were treated with 1 or 10 mM DFMO for 8 or 48 h and then given a single heat treatment (43 degrees C, 90 min) at intervals up to 150 h after DFMO addition. Cellular survival, DNA polymerase activity, and polyamine levels were measured. Delayed heat sensitization for cell lethality began 50-55 h (about two cell divisions) after addition of 10 or 1 mM of DFMO for 8 or 48 h, respectively; i.e., cell survival of heated control cells was about 10(-1), but decreased to 10(-4)-10(-5) in heated DFMO-treated cells by 100 h. During this same interval, delayed heat sensitization also was observed for loss of DNA polymerase beta activity (from 20% in cells heated without DFMO treatment to 7% in heated DFMO-treated cells), but none was observed for DNA polymerase alpha activity. Delayed heat sensitization disappeared at 120-130 h after DFMO addition, with survival of heated DFMO-treated cells returning to that for heated control cells. The onset of delayed heat sensitization occurred 30-40 h after intracellular levels of putrescine and spermidine were depleted by more than 95%; however, spermine levels were not lowered, and in some cases even increased. Levels of putrescine and spermidine increased 5-10 h before delayed heat sensitization disappeared. While putrescine reached 25% of control, spermidine exceeded control levels during this time. Furthermore, delayed heat sensitization could be reversed by adding 10(-3) M putrescine or 5 X 10(-5) M spermidine 85-95 h after DFMO addition; in both cases spermidine increased 5-10 h before the decrease in heat sensitization. Finally, neither delayed heat sensitization nor depletion of spermidine was observed in nondividing plateau-phase cells treated with DFMO, although putrescine was depleted. These results lead to the hypothesis that DFMO-induced heat sensitization which occurs after inhibition of the synthesis of putrescine is secondary to the depletion of spermidine in some critical compartment of the cell or to a biochemical alteration. This depletion or biochemical alteration apparently occurs as the cells divide about two times after the intracellular levels of soluble spermidine have been depleted.  相似文献   

11.
The positively charged polyamines putrescine, spermidine, and spermine are thought to be important in the maintenance of chromosomal structure. Polyamine depletion by the ornithine decarboxylase inhibitor, 2-difluoromethyl-ornithine (DFMO) is known to alter the effect of several DNA active agents, presumably resulting from the altered conformation of the polyamine depleted DNA. Here we compare the polyamine depletion effects of DFMO and the spermidine analogue N1,N8 bis(ethyl)spermidine (BESpd) on the formation of Topoisomerase II mediated, 4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA) induced cleavable complex formation in human large cell undifferentiated lung carcinoma NCI H157 cells. This human cell line responds in the normal cytostatic manner to DFMO, whereas it responds in an unusual cytotoxic manner to treatment with BESpd. Here we report that neither DFMO nor BESpd alone affects the formation of cleavable complex. However, both compounds significantly enhance the m-AMSA induced formation of cleavable complex, each by approximately 1.6 fold. These results indicate that both DFMO and BESpd lead to a similar depletion of nuclear polyamines. Additionally, although BESpd closely resembles the natural polyamine spermidine, it appears that it cannot substitute for Spd at the level of DNA.  相似文献   

12.
This laboratory has previously reported that progesterone can initiate a rapid transient increase in the concentration of intracellular free Ca2+([Ca2+]i) and an increase in a Ca2+-requiring exocytotic event, the acrosome reaction (AR) in human sperm. Rapid increases in Ca2+ fluxes of some mammalian cells caused by another steroid, testosterone, require polyamine biosynthesis. Herein, we tested two polyamine biosynthesis suicide inhibitors for their effects on the progesterone-initiated increase in [Ca2+]i and AR in capacitated human sperm in vitro: DL-α-(difluoromethyl)ornithine hydrochloride (DFMO), an inhibitor of putrescine synthesis by ornithine decarboxylase and (5′-{[(Z))-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine (MDL 73811), an inhibitor of S-adenosylmethionine decarboxylase (required for spermidine and spermine synthesis). Sperm were capacitated in vitro and preincubated 10 min with 4.9 mM DFMO or 9.8 μM MDL 73811 with or without various polyamines (245 μM). Progesterone (3.09 μM final concentration) or progesterone solvent (ethanol, 0.1% final concentration) was then added, sperm fixed 1 min after additions and AR assayed by indirect immunofluorescence or with fluorescein-labeled Con A lectin. DFMO strongly inhibited the AR but putrescine (product of ornithine decarboxylase and precursor of spermidine and spermine) reversed that inhibition. Preincubation for 25 min with DMFO + spermidine also reversed DFMO inhibition. MDL 73811 inhibited the progesterone-initiated AR, and a 10 min preincubation with spermidine, but not putrescine or spermine, reversed that inhibition. Preincubations with putrescine alone or with spermidine alone followed by addition of the progesterone solvent did not initiate the AR, and such preincubations followed by progesterone addition did not increase the AR more than progesterone alone. MDL 73811 and DFMO partially inhibited the rapid progesterone-initiated increase in [Ca2+]i (assayed with fura-2), and those inhibitions were partially reversed by putrescine and spermidine, respectively. Putrescine or spermidine alone did not increase [Ca2+]i nor did preincubation with either polyamine followed by progesterone addition increase [Ca2+]i more than progesterone alone. Neither inhibitor was able to inhibit the AR initiated by the calcium ionophore, ionomycin. Our results suggest that human sperm polyamine biosynthesis is necessary for the progesterone-initiated rapid increase in [Ca2+]i and subsequent membrane events of the AR. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Luminal and basolateral uptake of polyamines by the rat small intestine was studied in vivo. In the concentration range studied (0.1-5 mg per rat) 23-47% of the individual polyamines given intragastrically were found in the body after 1 h, with the small intestine retaining 4-12% of the dose. With spermidine or spermine, labelled polyamines accounted for 85-96% of the counts in the small intestine and between 72-82% were in the form given. However, with putrescine only 29-39% of the label found in the tissue remained in polyamine form and even less, 11-15%, as putrescine. Luminal uptake of polyamines was linear, non-saturable and was not stimulated when small intestinal growth was stimulated by phytohaemagglutinin (PHA). On the basolateral side of the gut, polyamine uptake was stimulated by PHA in a time-dependent way in advance of detectable growth. Overall polyamine recoveries were high (89-99%) with intraperitoneally administered spermidine and spermine. Moreover, a large proportion of the counts in the tissue (63-89%) were still in the original form. Even with putrescine, total recoveries of polyamines (72-88%) and putrescine (24-33%) were elevated in comparison with those from the lumen. Treatment of rats with alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, reduced tissue polyamine content, although it had slight effects only on basolateral polyamine transport. The PHA-stimulated increase of polyamine uptake was not abolished in the presence of DFMO.  相似文献   

14.
15.
The effects of methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of polyamine biosynthesis were studied on tuberization and cellular polyamine content using in vitro Solanum tuberosum (cv Binjte) plants. When MGBG was added to the culture medium, it produced a partial inhibition of the growth of stems and leaves; it totally blocked rhizogenesis and strongly stimulated tuber formation. Morphogenetic effects of MGBG were correlated to a 40 % decrease in free putrescine, spermidine, spermine content of the leaves and to a 28 % decrease in spermidine titer of the stems. In the tubers, this inhibitor did not change the free polyamine titer but increased by up to 85 % the titer of conjugated putrescine, spermidine, spermine. When the plants were grown in the dark, MGBG produced, like benzyladenine, a stimulation of the rate of tuberization and enhanced the content of conjugated polyamines in the tuber. These results support the hypothesis that polyamines play an important role in the morphogenesis of potato plants. The role of polyamine conjugation in tuber development is discussed.  相似文献   

16.
Methylglyoxal bis(guanyl hydrazone) (MGBG) and the related diamidine compounds berenil and pentamidine inhibited multiplication of A. culbertsoni. The growth inhibition by MGBG (2.5 mM) in the peptone medium was accompanied by the disappearance of spermidine and a marked reduction in the level of diaminopropane. MGBG and berenil completely inhibited growth in a chemically defined medium at 1 mM and 1-2 microM concentration, respectively. However, there was no decrease in the polyamine levels in the early stages of growth inhibition by these agents. Uptake of putrescine, spermidine and spermine by A. culbertsoni has been demonstrated but addition of exogenous polyamines did not reverse the growth inhibitory action of MGBG and berenil. Inhibition of S-adenosylmethionine decarboxylase and decrease in polyamine synthesis do not seem to be the primary targets for the antiamoebic action of MGBG and berenil.  相似文献   

17.
ABSTRACT: BACKGROUND: Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor alpha-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM). METHODS: A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 muM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 muM. A 96-well assay was used to determine cytotoxicity after five days after treatment. RESULTS: The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre-treatment of the cells with DFMO, and varied dependent on the concentration of DENSPM. The uptake of cisplatin was unchanged. Conclusions: Taken together, these results demonstrate that combinations of polyamine synthesis inhibitors with BBR3464 appear to be a promising approach to enhance the anticancer activity against HSCC.  相似文献   

18.
Summary A difference was observed in the effect of difluoromethlyornithine (DFMO), a specific inhibitor of ornithine decarboxylase, on human and murine granulocyte-macrophage precursor cell (CFU-C) proliferation in vitro, in the presence of fetal bovine serum (FBS) and horse serum (HS). A dose of DFMO which almost totally abolished CFU-C colonies in cultures containing FBS had no effect or very little effect on CFU-C in cultures supplemented with HS. This effect could be reversed by aminoguanidine reacting with diamine oxidase (DAO), which is present in FBS but not in HS. The importance of DAO in the assessment of polyamine effects is also suggested by decreased colony formation in cultures containing HS and DFMO only after the addition of this enzyme. Additionally, Mo T cell line cultures containing DFMO demonstrated a substantially lower intracellular concentration of putrescine in the presence of FBS rather than HS. Supported in part by National Institutes of Health grant RO1-AM27423 and American Cancer Society grant CH-334.  相似文献   

19.
We have assessed the effect of various medium supplements inpromoting the ability of maize (Zea mays L.) inbred FR27rhmsuspension cultures to grow following a period of 4 °C chillingstress. Following a 4 week exposure to 4 °C in culture mediumwithout proline, no cell growth occurred upon subsequent incubationat 28°C for 2 weeks. This inhibition was reversed when 3to 48 mol m–3 proline or 0.1 mol m–3 putrescineor 0.01 mol m–3 spermidine were present in the mediumduring the chilling stress. On the other hand, suspensions weremade more sensitive to 4°C by blocking polyamine biosynthesiswith 1.0 mol m–3 methylglyoxal bis (guanylhydrazone) (MGBG)or a combination of 1.0 mol m–3 difluoromethylornithine(DFMO) and 1.0 mol m–3 difluoromethylarginine (DFMA).The addition of 10 mol m–3 putrescine to the suspensioncontaining DFMO and DFMA prevented the increased chilling sensitivity.Electrolyte leakage studies conducted to assess membrane integrityafter 4 weeks at 4°C and a 2 week regrowth period showedthat cells treated with no polyamines (control), 0.01 mol m–3spermidine, 1.0 mol m–3 putrescine, or 1.0 mol m–3MGBG lost 43, 32, 14, and 100% of the total electrolyte pool,respectively. These results suggest that proline and polyaminesare beneficial for inducing chilling tolerance in FR27rhm suspension. Key words: Proline, polyamine, chilling stress  相似文献   

20.
An exposure of cultured Cloudman S91 melanoma cells to inhibitors of polyamine biosynthesis, 2-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) (MGBG), distinctly promoted the expression of differentiated biochemical functions of the tumor cells. Slight to moderate growth inhibition produced by the compounds was associated with a stimulation of melanogenesis, as reflected by a striking enhancement of tyrosinase (EC 1.10.3.1) activity and an increase in cellular melanin content. Both antimetabolites acted synergistically with α-melanotropin (MSH), as regards the stimulation of melanogenesis. Exposure of the melanoma cells to MSH resulted in most experiments in a marked decrease of the intracellular polyamine pools, usually involving all three polyamines (putrescine, spermidine and spermine). The DFMO-induced stimulation of melanogenesis was totally suppressed by the administration of putrescine, whereas the MSH-stimulated tyrosinase activity was not influenced by the diamine. Although many recent reports indicate that terminal differentiation is accompanied by a distinct stimulation of polyamine biosynthesis, our results suggest that in certain cells polyamine deprivation may lead to an enhanced expression of differentiated phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号