首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27(KIP1). Generation of Mad1/p27(KIP1) double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27(KIP1), including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27(KIP1) double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27(KIP1) single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27(KIP1) operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation.  相似文献   

2.
The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G(1) cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.  相似文献   

3.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFR-D-E) colonies and myeloid higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0.1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

4.
5.
The results of this study support a proposed sequence of IL-3-induced hemopoietic cell proliferation and differentiation. Specifically, IL-3 uniquely induces the transient expression of Thy-1 Ag on Thy-1- bone marrow cells during a 2-wk culture period. Thy-1 Ag is expressed on immature myeloid cells that are undergoing lineage restrictions to granulocytes, macrophages, and mast cells. Flow microfluorimetry-separated Thy-1+ cells require the addition of IL-3 or granulocyte/macrophage-CSF to the culture medium for continued growth and, as these cells divide and undergo terminal differentiation they gradually lose Thy-1 Ag expression. The loss of Thy-1 expression is not strictly correlated with cellular proliferation since the expression of Thy-1 decreases on proliferating cells. Last, IL-3 does not maintain the Thy-1- stem cell population that can give rise to Thy-1+ cells in vitro. The relevance of this scheme of differentiation to normal hemopoiesis and to differentiation-arrested IL-3-dependent leukemic cell populations is discussed.  相似文献   

6.
7.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFU-D-E) colonies and myeloid clusters in the plasma clot. The number and growth rate of mouse CFU-D-G were higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0·1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

8.
Haematopoietic stem cells (HSCs) are capable of shifting from a state of relative quiescence under homeostatic conditions to rapid proliferation under conditions of stress. The mechanisms that regulate the relative quiescence of stem cells and its association with self-renewal are unclear, as is the contribution of molecular regulators of the cell cycle to these decisions. Understanding the mechanisms that govern these transitions will provide important insights into cell-cycle regulation of HSCs and possible therapeutic approaches to expand HSCs. We have investigated the role of two negative regulators of the cell cycle, p27(Kip1) and MAD1, in controlling this transition. Here we show that Mad1(-/-)p27(Kip1-/-) bone marrow has a 5.7-fold increase in the frequency of stem cells, and surprisingly, an expanded pool of quiescent HSCs. However, Mad1(-/-)p27(Kip1-/-) stem cells exhibit an enhanced proliferative response under conditions of stress, such as cytokine stimulation in vitro and regeneration of the haematopoietic system after ablation in vivo. Together these data demonstrate that the MYC-antagonist MAD1 and cyclin-dependent kinase inhibitor p27(Kip1) cooperate to regulate the self-renewal and differentiation of HSCs in a context-dependent manner.  相似文献   

9.
Jiang D  Schwarz H 《PloS one》2010,5(12):e15565

Background

Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis.

Methodology/Principal Findings

Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors.

Conclusions/Significance

This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage.  相似文献   

10.
11.
The permanent promyelocytic cell line HL-60 was subjected to stimulation with dimethyl sulfoxide (DMSO) and retinoic acid (RA), as well as 12-O-tetradecanoylphorbol-13-acetate (TPA) and lymphokine conditioned media for the induction of granulocytic or monocytic differentiation, respectively. Cells were investigated cytochemically using alpha-naphthylacetate esterase (acid esterase; AcE), naphthol AS-D chloroacetate esterase, and peroxidase reactions. In addition, the granulocyte or monocyte specific isoenzyme patterns of AcE as an intracytoplasmic property and the immunoreactivity to monoclonal antibodies recognizing granulocytes and monocytes (Ki-M2, Ki-M5) or monocytes alone (Ki-M1) were considered. The results indicated that HL-60 cell line bear the potency to evolve into granulocytes as well as monocytes. Additional studies performed on normal human bone marrow stained for AcE led to the conclusion that the myeloid cell line remains bipolar until the maturation stage of promyelocytes. Myelocytes being AcE positive only in 11.5 +/- 5.0 are heterogeneous and display the first indications of separated monocytic or granulocytic differentiation.  相似文献   

12.
The EML hematopoietic progenitor cell line is a model system for studying molecular events regulating myeloid commitment and terminal differentiation. We used representational difference analysis to identify genes that are expressed differentially during myeloid differentiation of EML cells. One gene (named mAKRa) encoded a novel member of the aldoketo reductase (AKR) superfamily of cytosolic NAD(P)(H)-dependent oxidoreductases. mAKRa mRNA was detected in murine hematopoietic tissues including bone marrow, spleen, and thymus. In myeloid cell lines, mAKRa was expressed at highest levels in cells representative of promyelocytes. mAKRa mRNA levels increased rapidly in response to interleukin-3 over the first 24 h of EML cell differentiation when the cells undergo lineage commitment and extensive proliferation. mAKRa mRNA levels decreased later in the differentiation process particularly when the EML cells were cultured with granulocyte/macrophage colony-stimulating factor and retinoic acid to induce terminal granulocytic maturation. mAKRa mRNA levels decreased during retinoic acid-induced terminal granulocytic differentiation of the MPRO promyelocyte cell line. AKRs act as molecular switches by catalyzing the interconversion or inactivation of bioactive molecules including steroids and prostaglandins. We propose that mAKRa may catalyze the production or catabolism of autocrine factors that promote the proliferation and/or lineage commitment of early myeloid progenitors.  相似文献   

13.
Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units-fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.  相似文献   

14.
The purpose of this study was to describe the microRNA (miRNA) expression profiles of neutrophils and their precursors from the initiation of granulopoiesis in the bone marrow to extravasation and accumulation in skin windows. We analyzed three different cell populations from human bone marrow, polymorphonuclear neutrophil (PMNs) from peripheral blood, and extravasated PMNs from skin windows using the Affymetrix 2.0 platform. Our data reveal 135 miRNAs differentially regulated during bone marrow granulopoiesis. The majority is differentially regulated between the myeloblast/promyelocyte (MB/PM) and myelocyte/metamyelocyte (MC/MM) stages of development. These 135 miRNAs were divided into six clusters according to the pattern of their expression. Several miRNAs demonstrate a pronounced increase or reduction at the transition between MB/PM and MC/MM, which is associated with cell cycle arrest and the initiation of terminal differentiation. Seven miRNAs are differentially up-regulated between peripheral blood PMNs and extravasated PMNs and only one of these (miR-132) is also differentially regulated during granulopoiesis. The study indicates that several different miRNAs participate in the regulation of normal granulopoiesis and that miRNAs might also regulate activities of extravasated neutrophils. The data present the miRNA profiles during the development and activation of the neutrophil granulocyte in healthy humans and thus serves as a reference for further research of normal and malignant granulocytic development.  相似文献   

15.
The AGAPEPAEPAQPGVY proline-rich polypeptide (PRP-1) was isolated from neurosecretory granules of the bovine neurohypophysis; it is produced by N. supraopticus and N. paraventricularis. It has been shown that PRP-1 has many potentially beneficial biological effects including immunoregulatory, hematopoietic, antimicrobial and anti-neurodegenerative properties. Here we demonstrated that PRP-1 administration influence on redistribution of monocytes, granulocytes and lymphocytes between bone marrow (BM) and peripheral blood and promotes the influx of granulocytes and monocytes/macrophages from BM into peripheral blood and accumulation of immature granulocyte and monocyte in BM and delayed the maturation of T cells in BM. PRP-1 increased colony-forming cell proliferation in rat cells in vivo. In PRP-treated rat BM, the CFU number at day 4, 7 and 14 was considerably increased in comparison with untreated rats BM and no difference was found at day 21 and day 28. We found that PRP-1 enhances erythroid and myeloid colonies formation in human CD34+ progenitor cell culture in the presence of different growth factors and down-regulates T cells colony formation and specific surface markers expression during induction of human CD34+ progenitor cells differentiation into T lymphocytes lineage. We suggested that the hypothalamic PRP-1 possibly represents an endogenous peptide whose primary functions are to regulate neuronal survival and differentiation and hematopoiesis within neurosecretory hypothalamus—bone marrow humoral axis.  相似文献   

16.
17.
Summary Corparvax, a strain of Corynebacterium parvum with strong antitumor activity, had a greater and more prolonged effect of increasing the production of granulocytes and macrophages than did a weak antitumor strain, CN5888. Following the injection of Coparvax to mice, there was a prompt and sustained increase in serum granulocyte/macrophage colony-stimulating activity, an increase in the number of spleen granulocyte/macrophage progenitor cells, an increased rate of proliferation of the bone marrow granulocyte/macrophage progenitor cells and an increase in the number of blood granulocytes and monocytes. The time courses of the increased rates of proliferation of granulocyte/macrophage progenitor cells following the injection of Coparvax were different in the bone marrow and the spleen, suggesting that local microenvironmental factors were also important.If immunostimulants such as C. parvum are to be used in chemoimmunotherapy programs, the kinetics of the increased proliferative rate of the granulocyte/macrophage progenitor cells may be important, since the more rapidly proliferating cells will be more affected by cell cycle-active chemotherapeutic agents.with the technical assistance of Beverly M. Dunne and L. Atherton  相似文献   

18.
Abstract. The effect of leucophoretic serum (LS), obtained from rats with polyvinylpyrrolidone (PVP)-induced inflammation, on granulopoiesis in the bone marrow of normal CBA mice was studied. The following test systems were used: short term cultures (4 hr), diffusion chambers (8, 24, 48 and 72 hr) and in vivo assays (12, 24 and 48 hr). The results indicate that LS stimulates the proliferations of granulocytic cells by increasing the number of proliferative granulocytes in mitosis, as well as increasing the total number of proliferative granulocytes. LS did not appear to effect monocytes and other cell lines. It is concluded that a factor present in LS specifically stimulates the proliferation of granulocytic cells, both in vitro and in vivo .  相似文献   

19.
Essential differences were detected in differentiation of GFUs from bone marrow and peripheral blood. It was shown that as a result of thymectomy of adult animals the ability of bone marrow CFUs to form granulocytic colonies decreased and that of splenic CFUs to form erythroid colonies increased. The immunostimulating low-molecular-weight polypeptides, thymarin and cortexine , normalized the differentiation of CFUs from bone marrow and spleen but interfered with the formation of erythroid colonies from CFUs of peripheral blood of thymectomized mice.  相似文献   

20.
Hematopoietic cell differentiation is influenced by organ-dependent microenvironmental factors as well as humoral regulators. A technique is described for examining certain aspects of the hemopoietic inductive microenvironment in vitro. Suspension and agar cultures of mouse bone marrow were used to study the effects of organ stromal factors on cellular proliferation and differentiation. Bone, spleen, and thymus fragments from irradiated mice were placed in direct contact with or separated by a Nuclepore membrane from syngeneic marrow cells growing in suspension cultures. Normal adult mouse bone and spleen influenced granulocytic differentiation as well as cell proliferation. In this system, bone marrow and organ fragments from W/Wv and SlSld mice behaved like those of their non-anemic littermates. The most prominent difference between W/Wv and Sl/Sla mice and their normal counterparts was observed in the inductionof CFU-C from splenic precursors un-er the influence of CSA. In both types of anemic mice, in vitro generation of CFU-C from spleen was abnormal in young animals but was corrected by four months of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号