首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In C. elegans, the BH3-only domain protein EGL-1, the Apaf-1 homolog CED-4 and the CED-3 caspase are required for apoptosis induction, whereas the Bcl-2 homolog CED-9 prevents apoptosis. Mammalian B-cell lymphoma 2 (Bcl-2) inhibits apoptosis by preventing the release of the Apaf-1 (apoptotic protease-activating factor 1) activator cytochrome c from mitochondria. In contrast, C. elegans CED-9 is thought to inhibit CED-4 by sequestering it at the outer mitochondrial membrane by direct binding. We show that CED-9 associates with the outer mitochondrial membrane within distinct foci that do not overlap with CED-4, which is predominantly perinuclear and does not localize to mitochondria. CED-4 further accumulates in the perinuclear space in response to proapoptotic stimuli such as ionizing radiation. This increased accumulation depends on EGL-1 and is abrogated in ced-9 gain-of-function mutants. CED-4 accumulation is not sufficient to trigger apoptosis execution, even though it may prime cells for apoptosis. Our results suggest that the cell death protection conferred by CED-9 cannot be solely explained by a direct interaction with CED-4.  相似文献   

2.
Nonapoptotic role for Apaf-1 in the DNA damage checkpoint   总被引:4,自引:0,他引:4  
Apaf-1 is an essential factor for cytochrome c-driven caspase activation during mitochondrial apoptosis but has also an apoptosis-unrelated function. Knockdown of Apaf-1 in human cells, knockout of apaf-1 in mice, and loss-of-function mutations in the Caenorhabditis elegans apaf-1 homolog ced-4 reveal the implication of Apaf-1/CED-4 in DNA damage-induced cell-cycle arrest. Apaf-1 loss compromised the DNA damage checkpoints elicited by ionizing irradiation or chemotherapy. Apaf-1 depletion reduced the activation of the checkpoint kinase Chk1 provoked by DNA damage, and knockdown of Chk1 abrogated the Apaf-1-mediated cell-cycle arrest. Nuclear translocation of Apaf-1, induced in vitro by exogenous DNA-damaging agents, correlated in non-small cell lung cancer (NSCLC) with the endogenous activation of Chk-1, suggesting that this pathway is clinically relevant. Hence, Apaf-1 exerts two distinct, phylogenetically conserved roles in response to mitochondrial membrane permeabilization and DNA damage. These data point to a role for Apaf-1 as a bona fide tumor suppressor.  相似文献   

3.
Apaf1 and the apoptotic machinery   总被引:8,自引:0,他引:8  
The molecular characterization of the Caenorhabditis elegans cell death genes has been crucial in revealing some of the biochemical mechanisms underlying apoptosis in all animals. Four C. elegans genes, egl-1, ced-9, ced-4 and ced-3 are required for all somatic programmed cell death to occur. This genetic network is highly conserved during evolution. The pro-death gene egl-1 and the anti-death gene ced-9 have structural and functional similarities to the vertebrate Bcl2 gene family. The killer gene ced-3 encodes a cystein-aspartate protease (caspase), which is the archetype of a family of conserved proteins known as effectors of apoptosis in mammals. Zou and collaborators1 reported the biochemical identification of an apoptotic protease activating factor (Apaf1), a human homolog of C. elegans CED-4, providing important clues to how CED-4 and its potential relatives could work. A number of proteins have been shown to interact with Apaf1 or to be determinant for its activity as an apoptotic adapter. The aim of this review is to provide an overview of the recent progress made in the field of developmental apoptosis by means of the murine Apaf1 targeted mutations. The central role of Apaf1 in the cell death machinery (apoptosome) and its involvement in different apoptotic pathways will also be discussed.  相似文献   

4.
In the nematode Caenorhabditis elegans, CED-4 plays a central role in the regulation of programmed cell death. To identify proteins with essential or pleiotropic activities that might also regulate cell death, we used the yeast two-hybrid system to screen for CED-4-binding proteins. We identified MAC-1, a member of the AAA family of ATPases that is similar to Smallminded of Drosophila. Immunoprecipitation studies confirm that MAC-1 interacts with CED-4, and also with Apaf-1, the mammalian homologue of CED-4. Furthermore, MAC-1 can form a multi-protein complex that also includes CED-3 or CED-9. A MAC-1 transgene under the control of a heat shock promoter prevents some natural cell deaths in C. elegans, and this protection is enhanced in a ced-9(n1950sd)/+ genetic background. We observe a similar effect in mammalian cells, where expression of MAC-1 can prevent CED-4 and CED-3 from inducing apoptosis. Finally, mac-1 is an essential gene, since inactivation by RNA-mediated interference causes worms to arrest early in larval development. This arrest is similar to that observed in Smallminded mutants, but is not related to the ability of MAC-1 to bind CED-4, since it still occurs in ced-3 or ced-4 null mutants. These results suggest that MAC-1 identifies a new class of proteins that are essential for development, and which might regulate cell death in specific circumstances.  相似文献   

5.
No death without life: vital functions of apoptotic effectors   总被引:1,自引:0,他引:1  
As a result of the genetic experiments performed in Caenorhabditis elegans, it has been tacitly assumed that the core proteins of the 'apoptotic machinery' (CED-3, -4, -9 and EGL-1) would be solely involved in cell death regulation/execution and would not exert any functions outside of the cell death realm. However, multiple studies indicate that the mammalian orthologs of these C. elegans proteins (i.e. caspases, Apaf-1 and multidomain proteins of the Bcl-2 family) participate in cell death-unrelated processes. Similarly, loss-of-function mutations of ced-4 compromise the mitotic arrest of DNA-damaged germline cells from adult nematodes, even in a context in which the apoptotic machinery is inoperative (for instance due to mutations of egl-1 or ced-3). Moreover, EGL-1 is required for the activation of autophagy in starved nematodes. Finally, the depletion of caspase-independent death effectors, such as apoptosis-inducing factor (AIF) and endonuclease G, provokes cell death-independent consequences, both in mammals and in yeast (Saccharomyces cerevisiae). These results corroborate the conjecture that any kind of protein that has previously been specifically implicated in apoptosis might have a phylogenetically conserved apoptosis-unrelated function, most likely as part of an adaptive response to cellular stress.  相似文献   

6.
The p53 tumor suppressor promotes apoptosis in response to DNA damage. Here we describe the Caenorhabditis elegans gene ced-13, which encodes a conserved BH3-only protein. We show that ced-13 mRNA accumulates following DNA damage, and that this accumulation is dependent on an intact C. elegans cep-1/p53 gene. We demonstrate that CED-13 protein physically interacts with the antiapoptotic Bcl-2-related protein CED-9. Furthermore, overexpression of ced-13 in somatic cells leads to the death of cells that normally survive, and this death requires the core apoptotic pathway of C. elegans. Recent studies have implicated two BH3-only proteins, Noxa and PUMA, in p53-induced apoptosis in mammals. Our studies suggest that in addition to the BH3-only protein EGL-1, CED-13 might also promote apoptosis in the C. elegans germ line in response to p53 activation. We propose that an evolutionarily conserved pathway exists in which p53 promotes cell death by inducing expression of two BH3-only genes.  相似文献   

7.
The genes ced-3, ced-4 and ced-9 are central components in the cell death pathway of the nematode C. elegans. Ced-9, which functions to inhibit cell death, is homologous to the Bcl-2 family of mammalian anti-apoptotic genes. The ced-3 gene encodes a protein homologous to the caspases, a family of cysteine proteases involved in the execution of programmed cell death. It has recently been demonstrated that CED-4, an inducer of apoptosis for which no mammalian equivalent has been reported, can interact with CED-9 and Bcl-x(L). Here we confirm that CED-9 and CED-4 interact and using a series of deletion mutants, demonstrate that only short N-terminal deletions are tolerated in each molecule without loss-of-interaction. Two loss-of-function point mutations in different regions of CED-4 also lead to a significant loss of interaction suggesting further that the relevant interaction domains are not short linear sequences, but rather, are formed by more complex structural determinants in each molecule. Furthermore, we demonstrate that CED-4 not only interacts with Bcl-x(L) but also with its homologue, Bcl-2, and that the unstructured loop region present in Bcl-x(L) and Bcl-2 can regulate the CED-4 interaction. Lastly, we show that a BH3 peptide that can inhibit Bcl-2 family interactions also inhibits the interaction between Bcl-x(L) and CED-4.  相似文献   

8.
Apoptosis is a natural process during animal development for the programmed removal of superfluous cells. During apoptosis general protein synthesis is reduced, but the synthesis of cell death proteins is enhanced. Selective translation has been attributed to modification of the protein synthesis machinery to disrupt cap-dependent mRNA translation and induce a cap-independent mechanism. We have previously shown that disruption of the balance between cap-dependent and cap-independent C. elegans eIF4G isoforms (IFG-1 p170 and p130) by RNA interference promotes apoptosis in developing oocytes. Germ cell apoptosis was accompanied by the appearance of the Apaf-1 homolog, CED-4. Here we show that IFG-1 p170 is a native substrate of the worm executioner caspase, CED-3, just as mammalian eIF4GI is cleaved by caspase-3. Loss of Bcl-2 function (ced-9ts) in worms induced p170 cleavage in vivo, coincident with extensive germ cell apoptosis. Truncation of IFG-1 occurred at a single site that separates the cap-binding and ribosome-associated domains. Site-directed mutagenesis indicated that CED-3 processes IFG-1 at a non-canonical motif, TTTD(456). Coincidentally, the recognition site was located 65 amino acids downstream of the newly mapped IFG-1 p130 start site suggesting that both forms support cap-independent initiation. Genetic evidence confirmed that apoptosis induced by loss of ifg-1 p170 mRNA was caspase (ced-3) and apoptosome (ced-4/Apaf-1) dependent. These findings support a new paradigm in which modal changes in protein synthesis act as a physiological signal to initiate cell death, rather than occur merely as downstream consequences of the apoptotic event.  相似文献   

9.
The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.  相似文献   

10.
11.
Studies of apoptosis in C. elegans have allowed the identification of three genes, ced-3, ced-4 and ced-9. Their products constitute the components of an induction pathway of apoptosis conserved in the nematode and mammals. In Drosophila, homologues have been found for CED-3, CED-4 and CED-9. CED-9 belongs to the Bcl-2 family which includes negative (Bcl-2) and positive (Bax) regulators of apoptosis. The recently discovered Bcl-2 family member named Drob-1 acts as a positive regulator of cell death. To address whether a Bcl-2 anti-apoptotic pathway exists in the fly, we studied the effects of expressing the mammalian genes bcl-2 in Drosophila. In embryos, expression of bcl-2 inhibits developmental and X-ray-induced apoptosis. Expressing bcl-2 or the pro-apoptotic mammalian bax in the developing eye and wing alters these structures, bcl-2 increasing the number of cells, while bax reduces the number of cells. In addition, the functional interaction between Bcl-2 and Bax is conserved. These results indicate that factors necessary for the activity of bcl-2 and bax are present in Drosophila. Therefore, a Bcl-2 pathway for inhibition of cell death may exist in the fly.  相似文献   

12.
In the nematode Caenorhabditis elegans, the apoptotic machinery is composed of four basic elements: the caspase CED-3, the Apaf-1 homologue CED-4, and the Bcl-2 family members CED-9 and EGL-1. The ced-9(n1950) gain-of-function mutation prevents most, if not all, somatic cell deaths in C. elegans. It encodes a CED-9 protein with a glycine-to-glutamate substitution at position 169, which is located within the highly conserved Bcl-2 homology 1 domain. We performed biochemical analyses with the CED-9G169E protein to gain insight into the mechanism of programmed cell death. We find that CED-9G169E retains the ability to bind both EGL-1 and CED-4, although its affinity for EGL-1 is reduced. In contrast to the behavior of wild-type CED-9, the interaction between CED-9G169E and CED-4 is not disrupted by expression of EGL-1. Furthermore, CED-4 and CED-9G169E co-localizes with EGL-1 to the mitochondria in mammalian cells, and expression of EGL-1 does not induce translocation of CED-4 to the cytosol. Finally, the ability of EGL-1 to promote apoptosis is impaired by the replacement of wild-type CED-9 with CED-9G169E, and this effect is correlated with the inability of EGL-1 to induce the displacement of CED-4 from the CED-9.CED-4 complex. These studies suggest that the release of CED-4 from the CED-9.CED-4 complex is a necessary step for induction of programmed cell death in C. elegans.  相似文献   

13.
Apoptosis or programmed cell death is an important process to eliminate unnecessary or hazardous cells. Apaf-1, a mammalian homologue of CED-4 of C. elegans, is the essential adaptor molecule in the mitochondrial pathway of apoptosis. Mice lacking Apaf-1 show accumulation of neurons in the developing central nervous system due to reduced apoptosis. Apaf-1-deficient cells are remarkably resistant to various apoptotic stimuli. Apaf-1-mediated apoptosis plays a role in the prevention of tumorigenesis. However, Apaf-1-independent cell death pathways are also indicated. In this review, we will summarize what has been learned about the role of Apaf-1 by biochemical and genetical approaches.  相似文献   

14.
Huang CY  Chen JY  Wu SC  Tan CH  Tzeng RY  Lu PJ  Wu YF  Chen RH  Wu YC 《PloS one》2012,7(5):e36584
Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein), CED-9 (Bcl-2), and CED-4 (Apaf-1) act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k) that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution.  相似文献   

15.
The rapid engulfment of apoptotic cells is a specialized innate immune response used by organisms to remove apoptotic cells. In mammals, several receptors that recognize apoptotic cells have been identified; molecules that transduce signals from these receptors to downstream cytoskeleton molecules have not been found, however [1] [2] [3]. Our previous analysis of the engulfment gene ced-6 in Caenorhabditis elegans has suggested that CED-6 is an adaptor protein that participates in a signal transduction pathway that mediates the specific recognition and engulfment of apoptotic cells [1]. Here, we describe our isolation and characterization of a human cDNA encoding a protein, hCED-6, with strong sequence similarity to C. elegans CED-6. As is the case with the worm protein, hCED-6 contains a phosphotyrosine-binding (PTB) domain and potential Src-homology domain 3 (SH3) binding sites. Both CED-6 and hCED-6 contain a predicted coiled-coil domain in the middle region. The hCED-6 protein lacks the extended carboxyl terminus found in worm CED-6; this carboxy-terminal extension appears not to be essential for CED-6 function in C. elegans, however. Overexpression of hCED-6 rescues the engulfment defect of ced-6 mutants in C. elegans significantly, suggesting that hCED-6 is a functional homologue of C. elegans CED-6. Human ced-6 is expressed widely in most human tissues. Thus, CED-6, and the CED-6 signal transduction pathway, might be conserved from C. elegans to humans and are present in most, if not all, human tissues.  相似文献   

16.
We have identified and characterized a novel C. elegans gene, ced-12, that functions in the conserved GTPase signaling pathway mediated by CED-2/Crkll, CED-5/DOCK180, and CED-10/Rac to control cell migration and phagocytosis of apoptotic cells. We provide evidence that ced-12 likely acts upstream of ced-10 during cell migration and phagocytosis and that CED-12 physically interacts with CED-5 and forms a ternary complex with CED-2 in vitro. We propose that the formation and localization of a CED-2-CED-5-CED-12 ternary complex to the plasma membrane activates CED-10, leading to the cytoskeletal reorganization that occurs in the polarized extension of cell surfaces in engulfing cells and migrating cells. We suggest that CED-12 counterparts in higher organisms regulate cytoskeleton dynamics, as CED-12 does in C. elegans.  相似文献   

17.
Yu X  Odera S  Chuang CH  Lu N  Zhou Z 《Developmental cell》2006,10(6):743-757
Dynamins are large GTPases that act in multiple vesicular trafficking events. We identified 14 loss-of-function alleles of the C. elegans dynamin gene, dyn-1, that are defective in the removal of apoptotic cells. dyn-1 functions in engulfing cells to control the internalization and degradation of apoptotic cells. dyn-1 acts in the genetic pathway composed of ced-7 (ABC transporter), ced-1 (phagocytic receptor), and ced-6 (CED-1's adaptor). DYN-1 transiently accumulates to the surface of pseudopods in a manner dependent on ced-1, ced-6, and ced-7, but not on ced-5, ced-10, or ced-12. Abnormal vesicle structures accumulate in engulfing cells upon dyn-1 inactivation. dyn-1 and ced-1 mutations block the recruitment of intracellular vesicles to pseudopods and phagosomes. We propose that DYN-1 mediates the signaling of the CED-1 pathway by organizing an intracellular vesicle pool and promoting vesicle delivery to phagocytic cups and phagosomes to support pseudopod extension and apoptotic cell degradation.  相似文献   

18.
Shaham S  Reddien PW  Davies B  Horvitz HR 《Genetics》1999,153(4):1655-1671
Mutations in the gene ced-3, which encodes a protease similar to interleukin-1beta converting enzyme and related proteins termed caspases, prevent programmed cell death in the nematode Caenorhabditis elegans. We used site-directed mutagenesis to demonstrate that both the presumptive active-site cysteine of the CED-3 protease and the aspartate residues at sites of processing of the CED-3 proprotein are required for programmed cell death in vivo. We characterized the phenotypes caused by and the molecular lesions of 52 ced-3 alleles. These alleles can be ordered in a graded phenotypic series. Of the 30 amino acid sites altered by ced-3 missense mutations, 29 are conserved with at least one other caspase, suggesting that these residues define sites important for the functions of all caspases. Animals homozygous for the ced-3(n2452) allele, which is deleted for the region of the ced-3 gene that encodes the protease domain, seemed to be incompletely blocked in programmed cell death, suggesting that some programmed cell death can occur independently of CED-3 protease activity.  相似文献   

19.
The Apaf-1 protein is essential for cytochrome c-mediated caspase-9 activation in the intrinsic mammalian pathway of apoptosis. Although Apaf-1 is the only known mammalian homologue of the Caenorhabditis elegans CED-4 protein, the deficiency of apaf-1 in cells or in mice results in a limited cell survival phenotype, suggesting that alternative mechanisms of caspase activation and apoptosis exist in mammals. In Drosophila melanogaster, the only Apaf-1/CED-4 homologue, ARK, is required for the activation of the caspase-9/CED-3-like caspase DRONC. Using specific mutants that are deficient for ark function, we demonstrate that ARK is essential for most programmed cell death (PCD) during D. melanogaster development, as well as for radiation-induced apoptosis. ark mutant embryos have extra cells, and tissues such as brain lobes and wing discs are enlarged. These tissues from ark mutant larvae lack detectable PCD. During metamorphosis, larval salivary gland removal was severely delayed in ark mutants. However, PCD occurred normally in the larval midgut, suggesting that ARK-independent cell death pathways also exist in D. melanogaster.  相似文献   

20.
The C. elegans gene ced-12 functions in the engulfment of apoptotic cells and in cell migration, acting in a signaling pathway with ced-2 Crkll, ced-5 DOCK180, and ced-10 Rac GTPase and acting upstream of ced-10 Rac. ced-12 encodes a protein with a pleckstrin homology (PH) domain and an SH3 binding motif, both of which are important for ced-12 function. CED-12 acts in engulfing cells for cell corpse engulfment and interacts physically with CED-5, which contains an SH3 domain. CED-12 has Drosophila and human counterparts. Expression of CED-12 and its counterparts in murine Swiss 3T3 fibroblasts induced Rho GTPase-dependent formation of actin filament bundles. We propose that through interactions with membranes and with a CED-2/CED-5 protein complex, CED-12 regulates Rho/Rac GTPase signaling and leads to cytoskeletal reorganization by an evolutionarily conserved mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号