首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When mutations in CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 are combined, severe defects involving fusion of sepals and of stamens occur in Arabidopsis flowers. In addition, septa of gynoecia do not fuse along the length of the ovaries and many ovules have their growth arrested. CUC2 is expressed at the tips of septal primordia during gynoecium development and at the boundary between nucellus and chalaza during ovule development. These expression patterns are partially consistent with the phenotype of the mutant gynoecium. CUC2 mRNA is also shown to be expressed at the boundaries between meristems and organ primordia during both the vegetative and reproductive phases. This expression pattern indicates that CUC2 is generally involved in organ separation in shoot and floral meristems.  相似文献   

2.
In Arabidopsis thaliana and many other plant species, ovules arise from carpel tissue as new meristematic formations. Cell fate in proliferating ovule primordia is specified by particular ovule identity factors, such as the homeodomain factor BELL1 (BEL1) and MADS box family members SEEDSTICK (STK), SHATTERPROOF1 (SHP1), SHP2, and AGAMOUS. Both in the bel1 mutant and the stk shp1 shp2 triple mutant, integuments are transformed into carpelloid structures. Combining these mutants in a bel1 stk shp1 shp2 quadruple mutant, we showed that the bel1 phenotype is significantly enhanced. We also demonstrate that ovule differentiation requires the regulation of the stem cell maintenance gene WUSCHEL, repression of which is predominantly maintained by BEL1 during ovule development. Based on yeast three-hybrid assays and genetic data, we show that BEL1 interacts with the ovule identity MADS box factors when they dimerize with SEPALLATA proteins. We propose a model for ovule development that explains how the balance between carpel identity activity and ovule identity activity is established by a MADS box homeodomain protein complex.  相似文献   

3.
The MADS box organ identity gene AGAMOUS (AG) controls several steps during Arabidopsis thaliana flower development. AG cDNA contains an open reading frame that lacks an ATG triplet to function as the translation initiation codon, and the actual amino terminus of the AG protein remains uncharacterized. We have considered the possibility that AG translation can be initiated at a non-AUG codon. Two possible non-AUG initiation codons, CUG and ACG, are present in the 5' region of AG mRNA preceding the highly conserved MADS box sequence. We prepared a series of AG genomic constructs in which these codons are mutated and assayed their activity in phenotypic rescue experiments by introducing them as transgenes into ag mutant plants. Alteration of the CTG codon to render it unsuitable for acting as a translation initiation site does not affect complementation of the ag-3 mutation in transgenic plants. However, a similar mutation of the downstream ACG codon prevents the rescue of the ag-3 mutant phenotype. Conversely, if an ATG is introduced immediately 5' to the disrupted ACG codon, the resulting construct fully complements the ag-3 mutation. The AG protein synthesized in vitro by initiating translation at the ACG position is active in DNA binding and is of the same size as the AG protein detected from floral tissues, whereas AG polypeptides with additional amino-terminal residues do not appear to bind DNA. These results indicate that translation of AG is initiated exclusively at an ACG codon and prove that non-AUG triplets may be efficiently used as the sole translation initiation site in some plant cellular mRNAs.  相似文献   

4.
The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions.  相似文献   

5.
6.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:17,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

7.
The inflorescence meristem produces floral primordia that remain undifferentiated during the first stages of flower development. Genes controlling floral meristem identity include LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), LATE MERISTEM IDENTITY 1 (LMI1), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE24 (AGL24). The lfy mutant shows partial reversions of flowers into inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24 and svp single mutants or with the agl24 svp double mutant enhances the lfy phenotype and that the lfy agl24 svp triple mutant phenocopies the lfy ap1 double mutant. Analysis of the molecular interactions between LFY, AGL24 and SVP showed that LFY is a repressor of AGL24 and SVP, whereas LMI1 is a positive regulator of these genes. Moreover, AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all these genes are important for establishing floral meristem identity, regulatory loops are probably important to maintain the correct relative expression levels of these genes.  相似文献   

8.
9.
Metallochaperone-like genes in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
A complete inventory of metallochaperone-like proteins containing a predicted HMA domain in Arabidopsis revealed a large family of 67 proteins. 45 proteins, the HIPPs, have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence comparisons divided the proteins into seven major clusters (I-VII). Cluster IV is notable for the presence of a conserved Asp residue before the CysXXCys, metal binding motif, analogous to the Zn binding motif in E. coli ZntA. HIPP20, HIPP21, HIPP22, HIPP26 and HIPP27 in Cluster IV were studied in more detail. All but HIPP21 could rescue the Cd-sensitive, ycf1 yeast mutant but failed to rescue the growth of zrt1zrt2, zrc1cot1 and atx1 mutants. In Arabidopsis, single and double mutants did not show a phenotype but the hipp20/21/22 triple mutant was more sensitive to Cd and accumulated less Cd than the wild-type suggesting the HIPPs can have a role in Cd-detoxification, possibly by binding Cd. Promoter-GUS reporter expression studies indicated variable expression of these HIPPs. For example, in roots, HIPP22 and HIPP26 are only expressed in lateral root tips while HIPP20 and HIPP25 show strong expression in the root vasculature.  相似文献   

10.
Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.  相似文献   

11.
12.
The AGAMOUS gene of Arabidopsis thaliana is a homeotic gene involved in the development of stamens and carpels. This gene encodes a putative DNA-binding protein sharing a homologous region with the DNA-binding domains, MADS boxes, of yeast MCM1 and mammalian SRF. To examine the DNA-binding activity of the AGAMOUS protein, double-stranded oligonucleotides with random sequences of 40 bp in the central region were synthesized and mixed with the AGAMOUS MADS domain overproduced in Escherichia coli . Oligonucleotides which bound to the MADS domain were recovered by repeated immunoprecipitation with an antibody which recognizes the overproduced protein. From a comparison of the recovered DNA sequences, the consensus sequence of the high-affinity binding-sites for the AGAMOUS MADS domain was determined to be 5'-TT(A/T/G) CC(A/T)6GG(A/T/C)AA-3'. DNase I footprinting and methylation interference experiments showed that the MADS domain binds to this motif. Comparisons with the binding-site sequences of other MADS-box proteins revealed that the MCM1 binding-sites in a-mating type-specific promoters of Saccharomyces cerevisiae show similarities with the binding-site sequence of the AGAMOUS MADS domain. A synthetic MCM1 binding-site in the upstream region of the STE2 gene is recognized by the AGAMOUS MADS domain.  相似文献   

13.
Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can’t restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.  相似文献   

14.
Tissue specific expression of transgenes in plant species has several advantages over constitutive expression. Identification of ovule specific promoters would be useful in genetic engineering of plants with a variety of desirable traits such as genetically engineered parthenocarpy, female sterile plants or seedless fruits. Relative inaccessibility and difficulty in harvesting adequate amounts of tissue at known developmental stages has impeded the progress in cloning of promoters involved in ovule development. In the present study an ovule specific promoter was cloned from Arabidopsis AGL11 gene and used to express GUS (beta-glucuronidase) gene in transgenic Arabidopsis. Histochemical staining of GUS appeared in the center of young ovary (ovules), but no detectable GUS activity was observed in vegetative plant tissues, sepals, petals and androecium. AGL11 gene promoter can be useful to modify the developmental path of plants by expressing either plant hormones or lethal genes for agronomic purpose.  相似文献   

15.

Background  

Pollen tubes deliver sperm after navigating through flower tissues in response to attractive and repulsive cues. Genetic analyses in maize and Arabidopsis thaliana and cell ablation studies in Torenia fournieri have shown that the female gametophyte (the 7-celled haploid embryo sac within an ovule) and surrounding diploid tissues are essential for guiding pollen tubes to ovules. The variety and inaccessibility of these cells and tissues has made it challenging to characterize the sources of guidance signals and the dynamic responses they elicit in the pollen tubes.  相似文献   

16.
17.
As a second messenger, the free cytosolic calcium ion (Ca(2+)) plays important roles in many biochemical and physiological processes including photosynthesis in plants. In this study, we investigated morphological changes, chlorophyll accumulation and chloroplast development during early photomorphogenesis in etiolated seedlings of both Arabidopsis thaliana wild type (WT) and those with the antisense of CAS, a calcium sensor (CASas). Seedlings were grown at high, medium and low Ca(2+) concentrations to identify the roles of Ca(2+) and CAS in de-etiolation and chloroplast development. The results demonstrated that Ca(2+) and CAS are correlated with de-etiolation of A. thaliana after light exposure. High Ca(2+) significantly increased chlorophyll content and improved chloroplast development in both A. thaliana WT and CASas etiolated seedlings during de-etiolation. The analysis by western blot and real-time fluorescent quantitative polymerase chain reaction indicated that the expression levels of CAS mRNA and protein were upregulated by white light and external Ca(2+) significantly. Etiolated CASas plants showed much lower chlorophyll content and delay of chloroplast development as compared with WT plants, indicating that CAS functions in de-etiolation. All together, we concluded that the de-etiolation in A. thaliana was promoted by the high Ca(2+) concentration and CAS expression to a certain extent.  相似文献   

18.
AGAMOUS, a key player in floral morphogenesis, specifies reproductive organ identities and regulates the timely termination of stem cell fates in the floral meristem. Here, we report that strains carrying mutations in three genes, HUA1, HUA2, and HUA ENHANCER4 (HEN4), exhibit floral defects similar to those in agamous mutants: reproductive-to-perianth organ transformation and loss of floral determinacy. HEN4 codes for a K homology (KH) domain-containing, putative RNA binding protein that interacts with HUA1, a CCCH zinc finger RNA binding protein in the nucleus. We show that HUA1 binds AGAMOUS pre-mRNA in vitro and that HEN4, HUA1, and HUA2 act in floral morphogenesis by specifically promoting the processing of AGAMOUS pre-mRNA. Our studies underscore the importance of RNA processing in modulating plant development.  相似文献   

19.
20.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号