共查询到20条相似文献,搜索用时 0 毫秒
1.
K. Wevelsiep 《Biological cybernetics》1977,26(1):35-39
The visual system of vertebrates is capable of processing pattern signals over a wide range of intensity reaching from nearly absolute darkness to very bright sunlight. Typically the visual system of humans extracts fine contours of patterns of sufficiently high intensity or at high background intensity level, showing signal processing properties which can be explained by a bandpass system. Conversely, at very low intensity levels that system shows low-pass response: only coarse contours of patterns are recognized, however, the amplification of the signals has increased. The effect is called local adaption. A model is shown on the basis of a one-stage nonlinear spatial filter which, controlled by the local distribution of pattern intensity, can alter its frequency characteristic between low-pass response and bandpass response. Results are stated for computer-modelled filters. The investigation is restricted to one-dimensional filters, however, the results can be used to explain the function of two-dimensional filters qualitatively. 相似文献
2.
Directional responses to visual stimuli were analysed with the aid of a minimal computational model. The model is based upon arrays of motion sensors whose receptive fields are modified versions of those (difference-of-Gaussians) used to describe mechanisms in popular spatial vision models. In the model antagonistic influences on each motion sensor were assumed to: (1) arise from spatially non-aligned areas of the retina; and (2) to follow different time courses. Implications of the model were explored with simulations, and parallel psychophysical data were collected. Visual behaviours chosen for relatively detailed analysis were judgments of the temporal order of onset of two spatially displaced stimuli and motion aftereffects generated with discontinuously moving, sine-wave gratings. 相似文献
3.
Aim Spatial floristic and faunistic data bases promote the investigation of biogeographical gradients in relation to environmental determinants on regional to continental scales. Our aim was to extract major gradients in the distribution of vascular plant species from a grid‐based inventory (the German FLORKART data base) and relate them to long‐term precipitation and temperature records as well as soil conditions. We present an ordination technique capable of coping with this complex data array. The goal was also to sort out the influence of spatial autocorrelation, assuming floristic autocorrelation is anisotropic. Location Germany, at a spatial resolution of 6′ × 10′. Methods Isometric feature mapping (Isomap) was applied as a nonlinear ordination method. Isomap was coupled to ‘eigenvector‐based filters’ for generating spatial reference models representing spatial autocorrelation. What is novel here is that the derived filters are not based on the assumption of equidirectional autocorrelation. Instead, the so‐called ‘principal coordinates of anisotropic neighbour matrices’ build filters to test the influence of geographical vicinity in directions of high similarity among observations. Results The Isomap ordination of floristic data explained more than 95% of the data variance in six dimensions. The leading two dimensions (representing about 80% of the FLORKART data variance) revealed clear spatial gradients that could be related to independent effects of temperature, precipitation and soil observations. By contrast, the third and higher FLORKART dimensions were dominated by an antagonism of anisotropic spatial autocorrelation and soil conditions. A subsequent cluster analysis of the floristic Isomap coordinates educed the spatial organization of the floristic survey, indicating a considerable sampling bias. Conclusions We showed that Isomap provides a consistent methodical framework for both ordination and derived spatial filters. The technique is useful for tracing the often nonlinear features of species occurrence data to environmental drivers, taking into account anisotropic spatial autocorrelation. We also showed that sampling biases are a conspicuous source of variance in a frequently used floristic data base. 相似文献
4.
5.
In the context of brain-computer interface (BCI) system, the common spatial patterns (CSP) method has been used to extract discriminative spatial filters for the classification of electroencephalogram (EEG) signals. However, the classification performance of CSP typically deteriorates when a few training samples are collected from a new BCI user. In this paper, we propose an approach that maintains or improves the recognition accuracy of the system with only a small size of training data set. The proposed approach is formulated by regularizing the classical CSP technique with the strategy of transfer learning. Specifically, we incorporate into the CSP analysis inter-subject information involving the same task, by minimizing the difference between the inter-subject features. Experimental results on two data sets from BCI competitions show that the proposed approach greatly improves the classification performance over that of the conventional CSP method; the transformed variant proved to be successful in almost every case, based on a small number of available training samples. 相似文献
6.
Kingdon J 《Folia primatologica; international journal of primatology》2007,78(5-6):389-404
Most animals and plants need to send signals and rely on some sort of response. For an active receptor of signals, virtually all the signal transmissions that litter the environment, bar those that are functional at any given moment, can be described as 'noise'. I concentrate here on some primate examples where loud calls combine with 'loud' colouring and patterns, to suggest that increasing the intensity of signals can help overcome the problem of 'noise'. I also present evidence that certain ecological conditions favour use of the visual channel. I use some examples, drawn from African guenons, to suggest that visual patterns broadcast on this channel have evolved and have, effectively, been elaborated to conform with certain optical principles. These optical properties minimize ambiguity and enhance species-specific (or at least population-specific) distinctiveness. The abilities of ancestral forest primates to discriminate between functional signals and visual 'noise' may have played an important part in providing the basis for our own hominin ancestors' visual proficiencies. 相似文献
7.
8.
Sasaki Y 《Current opinion in neurobiology》2007,17(2):132-139
Perceptual organization or grouping is one of the central issues in vision research. Recent reports in the neuroimaging literature suggest that perceptual organization is mediated by distributed visual areas that range from the primary visual cortex (V1) to higher visual areas, depending on the availability of grouping cues and on the weight of contribution of each visual area. Evidence suggests that grouping by proximity and collinearity, and also perhaps filling-in, involve V1, whereas grouping by similarity and symmetry seems to depend on activation of higher visual areas. Further studies should include deliberate controls for confounding factors such as attentional artifacts and radial orientation bias, to clarify how spatiotemporal information in visual areas is integrated to give rise to perceptual organization. 相似文献
9.
Identifying the structure in cuttlefish visual signals 总被引:1,自引:0,他引:1
Crook AC Baddeley R Osorio D 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1427):1617-1624
The common cuttlefish (Sepia officinalis) communicates and camouflages itself by changing its skin colour and texture. Hanlon and Messenger (1988 Phil. Trans. R. Soc. Lond. B 320, 437-487) classified these visual displays, recognizing 13 distinct body patterns. Although this conclusion is based on extensive observations, a quantitative method for analysing complex patterning has obvious advantages. We formally define a body pattern in terms of the probabilities that various skin features are expressed, and use Bayesian statistical methods to estimate the number of distinct body patterns and their visual characteristics. For the dataset of cuttlefish coloration patterns recorded in our laboratory, this statistical method identifies 12-14 different patterns, a number consistent with the 13 found by Hanlon and Messenger. If used for signalling these would give a channel capacity of 3.4 bits per pattern. Bayesian generative models might be useful for objectively describing the structure in other complex biological signalling systems. 相似文献
10.
11.
Neurones with active conductance on dendrites integrate synaptic signals and modulate generation of axon spikes in a nonlinear way. Owing to experimental difficulties, modelling provides invaluable insight for the comprehension of neurone behaviour particularly when dendrites are excitable. We used experimental data obtained for the Anterior Gastric Receptor neurone (AGR neurone), which controls the lobster gastric mill activity, to derive a set of partial differential equations for the membrane voltage. Simulation showed that upon varying the intensity of stimulation on the dendrite, the response pattern between dendrites and axon activity continuously changes. In addition, when only half of the dendritic tree is active, axon firing exhibits regular oscillations and bursting activity. We discuss these results in relation with the experimental work done on the AGR neurone. 相似文献
12.
The ecology and evolution of visual pollen signals 总被引:9,自引:0,他引:9
K. Lunau 《Plant Systematics and Evolution》2000,222(1-4):89-111
By offering pollen and/or nectar as a food resource, angiosperms exploit flower visitors for pollen transport. Pollen thus acts not only as a means for transportation of male gametes, but also as a food reward for potential pollinators. Many findings provide compelling evidence that pollen acts, in addition, as a visual signal. The present contribution reviews several strategies that angiosperms have evolved to attract potential pollinators to the site of reward. We here consider evolutionary, ecological, sensory-physiological, and behavioural aspects of flower-pollinator interactions that are correlated with visual signals provided by pollen and pollen-producing organs, or imitations thereof. 相似文献
13.
Kazuo Yamazaki 《Oikos》2010,119(5):796-801
Leaf‐mining insects produce conspicuous and distinct leaf mines on various types of plant leaves. The diversity of leaf‐mine morphology has typically been explained by several factors, such as selective feeding on plant tissues, improvement of microclimate, faecal disposal, reduction in the efficiency of parasitoid search behaviour and leafminer phylogeny. Although these factors are certainly associated with mining patterns, masking the mines, rather than making them conspicuous, appears to be more advantageous for deterring parasitoids and predators of leafminers. However, here, I propose that prominent leaf mines may serve to signal or cue herbivores to avoid feeding on the mined leaves. Because most leafminers are sessile and complete their development within a single leaf, herbivory of mined leaves is detrimental to leafminer survival. Other herbivores appear to avoid consuming mined leaves for a variety of reasons: leaf mines mimic leaf variegation or mottling; mined leaves induce chemical and physical defences against herbivores; and leaf mines mimic fungal infection, animal excrement, and necrosed plant tissues. Hence, natural selection may have favoured leafminers that produce conspicuous mines because of the increased survival and fecundity of thereby reducing herbivory on mined leaves. 相似文献
14.
15.
Lombrozo T Judson J MacLeod DI 《Proceedings. Biological sciences / The Royal Society》2005,272(1564):725-732
The classical receptive field (RF) concept-the idea that a visual neuron responds to fixed parts and properties of a stimulus-has been challenged by a series of recent physiological results. Here, we extend these findings to human vision, demonstrating that the extent of spatial averaging in contrast perception is also flexible, depending strongly on stimulus contrast and uniformity. At low contrast, spatial averaging is greatest (about 11 min of arc) within uniform regions such as edges, as expected if the relevant neurons have orientation-selective RFs. At high contrast, spatial averaging is minimal. These results can be understood if the visual system is balancing a trade-off between noise reduction, which favours large areas of averaging, and detail preservation, which favours minimal averaging. Two distinct populations of neurons with hard-wired RFs could account for our results, as could the more intriguing possibility of dynamic, contrast-dependent RFs. 相似文献
16.
The Hartline-Ratliff equation is a linear integral equation of the second kind and is employed in modeling inhibitory networks. Saturation of the inhibiting elements is commonly modeled as a function whose form is sigmoid; however, the resulting integral equation is nonlinear. Whenever the unknown function within the integral is hypothesized to be a nondecreasing nonlinear function, the Hartline-Ratliff equation becomes a nonlinear integral equation of the Hammerstein type. We present existence and uniqueness theorems for a Hammerstein equation which represents a further generalization of the Hartline-Ratliff equation. 相似文献
17.
The spatial and temporal distribution of nematodes in two low rate percolating filter bed sewage treatment plants at Carnforth and Caton, Lancashire, were investigated. Nematodes were abundant reaching densities up to 900 cm−2 of media surface. Numbers decreased down the bed and species composition displayed spatial differences with bed depth. Eight orders of nematode were represented, members of the sub-family Diplogasterinae and Rhabditinae were particularly common. A seasonal pattern of abundance was clearly apparent; two peaks occurred, one in May and a second during the winter months. Lowest numbers corresponded with periods of highest temperature. The demise of the nematodes in the spring was related to the sloughing of the surface film on the media. 相似文献
18.
Th. Hildebrand 《Biological cybernetics》1980,36(4):235-241
Inhomogeneous and anisotropic processing stages developed in the visual system during evolution in order to match a (certainly highly complex) biological optimality criterion. As the examples presented in this paper show, scenes viewed can be separated stages such as processing of the central area of the picture field in a wide band fashion, where each detail is percieved and the contrasts are amplified. This requires good illumination as the amplification is small. At the periphery the amplification is higher which favors twilight vision. Especially the sensitivity for moving patterns is highly developed and a band pass prefilter requires only spatially narrow band channels in the course of further processing. Direction specific filter stages make it possible to solve special problems such as the reconstruction of a form from an illuminance distribution. 相似文献
19.
The development of innovative driver assistance systems requires the evaluation of the predisposed hypotheses such as acceptance and driving safety. For this purpose, the conduction of experiments with end-users as subjects is necessary. Analysis and evaluation are based on the recording of numerous sensor values and system variables. Video, gaze and physiological data are recorded for the analysis of gaze distraction and emotional reactions of subjects to system behaviour. In this paper, a modular data streaming and processing architecture is suggested and a concept for this architecture is defined for consistent data evaluation, which integrates off-the-shelf products for data analysis and evaluation. 相似文献
20.
John H. Horne 《Cell biochemistry and biophysics》1999,30(2):267-286
Hormones that act to release Ca2+ from intracellular stores initiate a signaling cascade that culminates in the production of inositol 1,4,5-trisphosphate (InsP3). The Ca2+ response mediated by InsP3 is not a sustained increase in the cytosolic Ca2+ concentration, but rather a series of periodic spikes that manifest as waves in larger cells. In vitro studies have determined that the key positive feedback parameter driving spikes and waves is a highly localized direct Ca(2+)-activation of InsP3-gated Ca2+ channels. Advances in fluorescent Ca2+ imaging have facilitated the resolution of individual positive feedback units. These studies have revealed that there are several modes of channel coupling underlying global Ca2+ signals; single channel openings or Ca2+ "blips," synchronized clusters of channels or Ca2+ "puffs," and cell wide calcium waves. It appears that the channel clusters that produce Ca2+ puffs are synchronized by the highly localized positive feedback that was predicted by the in vitro studies of channel regulation. Localization of InsP3-induced Ca2+ signals has been shown to be important for activation of several cellular processes including uni-directional salt flow and mitochondrial activation. 相似文献