首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT) states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted) conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.  相似文献   

2.
Recent research shows high potential for some p-N,N-dialkylaminobenzylidenecyanoacetates, part of a group known as fluorescent molecular rotors, to serve as fluorescent, non-mechanical viscosity sensors. Of particular interest are molecules compatible with aqueous environments. In this study, we present the synthesis and physical characterization of derivatives from 9-(2-carboxy-2-cyanovinyl)-julolidine and related molecules. All compounds show a power-law relationship of fluorescence emission with the viscosity of the solvent, different mixtures of ethylene glycol and glycerol to modulate viscosity. Compounds with high water solubility exhibit the same behavior in aqueous solutions of dextran, where the dextran concentration was varied to modulate viscosity. In addition, some compounds have been found to have low sensitivity towards changes in the pH in the physiological range. The compounds presented show promise to be used in biofluids, such as blood plasma or lymphatic fluid, to rapidly and non-mechanically determine viscosity.  相似文献   

3.
Optimization of organic solvent in multiphase biocatalysis   总被引:7,自引:0,他引:7  
The microbial epoxidation of propene and 1-butene was used to study some fundamental aspects of two-liquid-phase biocatalytic conversions. Introduction of a water-immiscible organic solvent phase in a free-cell suspension gave rise to a series of undesired phenomena, e.g., inactivation by the solvent, clotting of biomass, and aggregation of cells at the liquid-liquid interface. Immobilization of the cells in hydrophilic gels, e.g., calcium alginate, prevented direct cell-organic solvent contact and the related clotting and aggregation of biomass. However, the gel entrapment did not seem to provide additional protection against the organic solvent. The influence of various organic solvents on the retention of immobilized-cell activity was related to solvent properties like the polarity (as expressed by the Hildebrand solubility parameter) and the molecular size (as expressed by the molecular weight or molar volume). High activity retention was favored by a low polarity in combination with a high molecular weight. The solubility parameter also proved useful to describe the capacity of various organic solvents for oxygen and alkene oxides. This facilitated the optimization of the solvent polarity.  相似文献   

4.
DMABN (4-N,N-dimethylaminobenzonitrile) derivatives 1 and 2 were designed as new ratiometric fluorescent sensors for saccharides and fluoride ion (F(-)), respectively, based on the TICT (twisted intramolecular charge transfer) mechanism.  相似文献   

5.
Many disease states have associated blood viscosity changes. Molecular rotors, fluorescent molecules with viscosity sensitive quantum yields, have recently been investigated as a new method for biofluid viscosity measurement. Current viscometer measurements are complicated by proteins adhering to surfaces and forming air-surface layers. It is unknown at this time what effects proteins may have on biofluid viscosity measurements using molecular rotors. To answer this question, binding affinities to blood plasma proteins were investigated by equilibrium dialysis for four hydrophilic molecular rotors. Aqueous solutions of 9-[(2-cyano-2-hydroxy-carbonyl)vinyl]julolidine (CCVJ) and three derivatives were prepared and dialyzed against solutions of bovine source albumin, fibrinogen and immunoglobulin G approximating normal physiologic concentrations and fresh-frozen human plasma. After equilibration, dye concentration on each side of the dialysis membrane was assessed by spectrophotometry. The relative binding affinity of the four dyes to the proteins and to the plasma was compared. Affinity of all dyes was highest for albumin. The bound dye fraction showed little change in relation to protein concentration in the physiological concentration range. Diol, the most hydrophilic molecular rotor tested showed the lowest affinity for albumin. This study indicates that hydrophilic molecular rotors are well-suited for biofluid viscosity measurement.  相似文献   

6.
Molecular rotors are fluorescent molecules with a viscosity-sensitive quantum yield that are often used to measure viscosity changes in cell membranes and liposomes. However, commercially available molecular rotors, such as DCVJ (1) do not localize in cell membranes but rapidly migrate into the cytoplasm leading to unreliable measurements of cell membrane viscosity. To overcome this problem, we synthesized molecular rotors covalently attached to a phospholipid scaffold. Attaching the rotor group to the hydrophobic end of phosphatidylcholine (PC) did not affect the rotor's viscosity sensitivity and allowed adequate integration into artificial bilayers as well as complete localization in the plasma membrane of an endothelial cell line. Moreover, these new rotors enabled the monitoring of phospholipid transition temperature. However, attachment of the rotor groups to the hydrophilic head of the phospholipid led to a partial loss of viscosity sensitivity. The improved sensitivity and exclusive localization in the cell plasma membrane exhibited by the phospholipid-bound molecular rotors suggest that these probes can be used for the study of membrane microviscosity.  相似文献   

7.
The spectral properties of 4-methylumbelliferyl-glycosides (MeUmb-glycosides) were investigated in order to assess their usefulness as probes of the microenvironment of sugar binding sites on lectin molecules. It was shown that the abnormally high values for fluorescence polarization of free MeUmb-glycosides (from 0.07 to 0.251) were due neither to their molecular size nor to the blockade of their movement, but to the short lifetimes (less than 0.55 ns) of the excited state of these compounds. Working essentially with two MeUmb-monosaccharides and one MeUmb-disaccharide (MeUmb-alpha-D-galactopyranoside, MeUmb-beta-D-galactopyranoside, and MeUmb-2-acetamido-2-deoxy-3-O-(beta-D-galactopyranosyl)-beta-D- galactopyranoside) which were solubilized in various solvents, it was demonstrated that solvent polarity and viscosity definitely affected the fluorescence intensity of MeUmb-glycosides. A low-polarity medium reduced this intensity, and high viscosity enhanced it. The implications of these findings are discussed in relation to the variations in the fluorescence intensity of MeUmb-glycosides when these compounds were bound to lectins.  相似文献   

8.
9.
A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.  相似文献   

10.
Three phenylalanine derivatives, Ac-Phe-NHMe, H-Phe-NHMe, and Ac-Phe-OH, were selected as models of Phe residues situated at the internal, the N-terminal, and the C-terminal positions of peptide chains, respctively. The side-chain conformations of the three compounds were analyzed from the vicnal coupling constants 3JαβR and 3JαβS, of their 1H- nmr spectra measured in various organic sovlent. The two β-protons were unambiguously assined by use of sterospecifically β-monodeuterated phenylalanines. The pro-S β-proton was always situated at lower field than the pro-R one when they were observed separately. The results of a solvent effect on the conformation of the tree compounds demonstrated that the rotamer populations are remarkable sensitive of the three compounds demonstrated that the rotamer populations are remarkably sensitive to solvent polarity and that the tendencies of the solvent effects are quite different from each other. Ac-Phe-OH Showed a trend similar to that of Ac-Phe-OEt reported by early workers. The rotamer populations of other derivatives (Ac-Phe-NMe2, Ac-Phe-NH2, Ac-Phe-OBut, and Ac-Phe-OBzl) and of Phe residues in some N-acetyl dipeptde esters (Ac-Phe-Gly-OMe, Ac-Phe-Val-OMe, and Ac-Gly-Phe-OMe) were also examined in several sovent, and it was found that substituents of the Phe carboxyl group—amides or esters—determine the tendency of the solvent effect. These results are interesting in the side-chain conformations of Phe residues in peptides and proteins in an environment of low polarity can be disscussed on this experimental basis. Factors responsible for the solvent effect are discussed from (1) a structural comparison of the compunds with various carboxylic substituents, (2) an expriment with cyclohexylalanine derivatives, and (3) the measurement in mixed solvents wiht similar polarity.  相似文献   

11.
Amino-diphenylanilines and their planarized and twisted model compounds have been investigated by steady state and time-resolved absorption and emission, as well as by spectroelectrochemistry. These polyaniline model compounds show that the observation of excited states with full charge separation is linked to molecular twisting where the diaminobenzene is the donor and the phenyl group the acceptor. The observable charge transfer fluorescence shows the characteristic features of twisted intramolecular charge transfer (TICT) excited states, i.e. forbidden emissive properties and strong solvatochromic red shift. The transient absorption spectrum of the TICT state matches the ground state absorption spectrum of the electrochemically produced radical cation of the molecule. This is the first example where excited-state properties of the neutral and ground state properties of the radical cation are directly linked.  相似文献   

12.
Membrane viscosity is a key parameter in cell physiology, cell function, and cell signaling. The most common methods to measure changes in membrane viscosity are fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy. Recent interest in a group of viscosity sensitive fluorophores, termed molecular rotors, led to the development of the highly membrane-compatible (2-carboxy-2-cyanovinyl)-julolidine farnesyl ester (FCVJ). The purpose of this study is to examine the fluorescent behavior of FCVJ in model membranes exposed to various agents of known influence on membrane viscosity, such as alcohols, dimethyl sulfoxide (DMSO), cyclohexane, cholesterol, and nimesulide. The influence of key agents (propanol and cholesterol) was also examined using FRAP, and backcalculated viscosity change from FCVJ and FRAP was correlated. A decrease of FCVJ emission was found with alcohol treatment (with a strong dependency on the chain length and concentration), DMSO, and cyclohexane, whereas cholesterol and nimesulide led to increased FCVJ emission. With the exception of nimesulide, FCVJ intensity changes were consistent with expected changes in membrane viscosity. A comparison of viscosity changes computed from FRAP and FCVJ led to a very good correlation between the two experimental methods. Since molecular rotors, including FCVJ, allow for extremely easy experimental methods, fast response time, and high spatial resolution, this study indicates that FCVJ may be used to quantitatively determine viscosity changes in phospholipid bilayers.  相似文献   

13.
Membrane viscosity is a key parameter in cell physiology, cell function, and cell signaling. The most common methods to measure changes in membrane viscosity are fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy. Recent interest in a group of viscosity sensitive fluorophores, termed molecular rotors, led to the development of the highly membrane-compatible (2-carboxy-2-cyanovinyl)-julolidine farnesyl ester (FCVJ). The purpose of this study is to examine the fluorescent behavior of FCVJ in model membranes exposed to various agents of known influence on membrane viscosity, such as alcohols, dimethyl sulfoxide (DMSO), cyclohexane, cholesterol, and nimesulide. The influence of key agents (propanol and cholesterol) was also examined using FRAP, and backcalculated viscosity change from FCVJ and FRAP was correlated. A decrease of FCVJ emission was found with alcohol treatment (with a strong dependency on the chain length and concentration), DMSO, and cyclohexane, whereas cholesterol and nimesulide led to increased FCVJ emission. With the exception of nimesulide, FCVJ intensity changes were consistent with expected changes in membrane viscosity. A comparison of viscosity changes computed from FRAP and FCVJ led to a very good correlation between the two experimental methods. Since molecular rotors, including FCVJ, allow for extremely easy experimental methods, fast response time, and high spatial resolution, this study indicates that FCVJ may be used to quantitatively determine viscosity changes in phospholipid bilayers.  相似文献   

14.
The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV‐vis electronic absorption spectra. From solvatochromic theory the ground and excited‐state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski–Chamma–Viallet and Reichardt equations are quite similar. The ground and excited‐state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO‐LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of viscosity, solvent polarity and pH of the medium on the reaction of a protein, bovine serum albumin (BSA), with organohalo-peroxyl radical in aqueous solution has been studied using pulse radiolysis technique. Unlike in dilute aqueous solution, electron transfer from tyrosine to tryptophan radical in BSA has been clearly observed at a viscosity of 7.7 centiPoise (cP). The oxidation of BSA, tryptophan and tyrosine in different media has also been compared with those taking place in dilute aqueous solution. The effect of solvent characteristics on the observed charge transfer has been discussed.  相似文献   

16.
A series of 4‐alkoxyethoxy‐N‐octadecyl‐1,8‐naphthalimides with intense blue fluorescence were designed and synthesized as polarity and spectrofluorimetric probes for the determination of proteins. In solvents of different polarities, the Stokes shifts of two dyes increased with increasing solvent polarity and fluorescence quantum yields decreased significantly, suggesting that electronic transiting from ground to excited states was π–π* in character. Dipole moment changes were estimated from solvent‐dependent Stokes shift data using a solvatochromic method based on bulk solvent polarity functions and the microscopic solvent polarity parameter (). These results were generally consistent with semi‐empirical molecular orbital calculations and were found to be quite reliable based on the fact that the correlation of the solvatochromic Stokes shifts with was superior to that obtained using bulk solvent polarity functions. Fluorescence data revealed that the fluorescence quenching of human serum albumin (HSA) by dyes was the result of the formation of a Dye–HSA complex. The method was applied to the determination of total proteins (HSA + immunoglobulins) in human serum samples and results were in good agreement with those reported by the research institute. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A new technique with controlled interface generation allows separation and quantitation of enzyme inactivation by both solvent/aqueous interface and dissolved solvent. This has now been used in n-butanol, isopropylether, 2-octanone, n-hexane, n-butylbenzene, and n-tridecane. Ribonuclease was stable with all the solvent/aqueous interfaces studied. Chymotrypsin was mainly inactivated by the more hydrophobic solvent/aqueous interfaces, whereas lipase was only inactivated by the less hydrophobic solvent/aqueous interfaces. Urease was inactivated by some interfaces, but not all, without an obvious trend. Thus, the commonly expected simple relationship with solvent polarity (e.g., log P) does not apply when interfacial inactivation is determined specifically. Greater dissolved solvent inactivation occurred with the more polar solvents, though only a general trend was apparent with log P. A better correlation was noted with the Hilde-brand solubility parameter. Interfacial effects are discussed with reference to enzyme molecular weight, denaturation temperature, hydrophobicity, and adiabatic compressibility. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
19.
J Feitelson  S Yedgar 《Biorheology》1991,28(1-2):99-105
The migration rate of small molecules through the structure of proteins can be monitored by quenching the light emitted from an excited optical probe located within the protein. In the present study we examined the influence of the solvent viscosity on the migration rate of the quencher anthraquinone sulfonate through myoglobin towards an excited Zn protoporphyrin molecule at the binding site of the protein. The solvent viscosity was increased by adding dextrans of different molecular weight but forming isoviscous solutions. The results demonstrate that the migration rate in the protein decreases with increasing solvent viscosity. This suggests that the fluctuations on the protein structure, which make the above migration possible, are affected by the solvent macroviscosity.  相似文献   

20.
Two dimensional homonuclear (1H-1H) chemical shift correlation, double resonance and nuclear Overhauser effect difference spectroscopy were used to determine spectral parameters of narasin acid in different solvents approximating the range of polarities encountered within a biological membrane. The observed chemical shift and coupling constant changes were consistent with a polarity mediated shift between two conformational states, with the major conformational adjustments occurring in two specific backbone regions of the molecule previously described as “hinges” (1,2). Evidence suggests that the conformational equilibrium is not only mediated by solvent polarity but may in part be determined by the intrinsic propensity of narasin to form inclusion complexes with H+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号