首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colletotrichum trifolii is the fungal pathogen of alfalfa that causes anthracnose disease. For successful plant infection, this fungus must undergo a series of morphological transitions following conidial attachment, including germination and subsequent differentiation, resulting in appressorium formation. Our previous studies with pharmacological effectors of signaling pathways have suggested the involvement of cyclic AMP (cAMP)-dependent protein kinase (PKA) during these processes. To more precisely evaluate the role of PKA in C. trifolii morphogenesis, the gene encoding the catalytic (C) subunit of PKA (Ct-PKAC) was isolated, sequenced, and inactivated by gene replacement. Southern blot analysis with C. trifolii genomic DNA suggested that Ct-PKAC is a single-copy gene. Northern (RNA) blot analysis with total RNA from different fungal growth stages indicated that the expression of this gene was developmentally regulated. When Ct-PKAC was insertionally inactivated by gene replacement, the transformants showed a small reduction in growth relative to the wild type and conidiation patterns were altered. Importantly, PKA-deficient strains were unable to infect intact alfalfa (host) plants, though only a slight delay was observed in the timing for conidial germination and appressorial formation in the Ct-PKAC disruption mutants. Moreover, these mutants were able to colonize host tissues following artificial wounding, resulting in typical anthracnose disease lesions. Coupled with microscopy, these data suggest that the defect in pathogenicity is likely due to a failure in penetration. Our results demonstrate that PKA has an important role in regulating the transition between vegetative growth and conidiation, and is essential for pathogenic development in C. trifolii.  相似文献   

2.
A cDNA encoding the skeletal muscle phosphorylase kinase catalytic subunit gamma has been isolated and sequenced. It contains 57 nucleotides of 5' nontranslated sequence, the entire coding sequence, and 1004 nucleotides of 3' nontranslated sequence. Probes derived from this gamma-cDNA were used to investigate the expression of gamma-messages in liver, heart, and skeletal muscle tissues. The results demonstrate that the gamma-mRNAs expressed in heart tissue are homologous to the skeletal muscle gamma-mRNAs. However, in liver tissue, no homologous gamma-mRNAs were detected. The implications of these results for understanding gamma-isoform expression and the possibility of a liver-specific gamma-gene are discussed.  相似文献   

3.
The Cgamma and Calpha subunits of the cAMP-dependent protein kinase (PKA) contain 350 amino acids that are highly homologous (83% amino acid sequence), with 91% homology within the catalytic domain (a.a. 40-300). Unlike Cgamma, the Calpha subunit has been readily purified and characterized as a recombinant protein in vitro, in intact cells, and in vivo. This report describes for the first time the expression, purification, and characterization of Cgamma. The expression of active Cgamma was eukaryote-specific, from mammalian and insect cells, but not bacteria. Active recombinant Cgamma was optimally expressed and purified to homogeneity from Sf9 cells with a 273-fold increase in specific activity and a 21% recovery after sequential CM-Sepharose and Sephacryl S-300 chromatography. The specific activity of pure Cgamma was 0.31 and 0.81 U/mg with kemptide and histone as substrates, respectively. Physical characterization showed Cgamma had a lower apparent molecular weight and Stokes radii than Calpha, suggesting differences in tertiary structures. Steady-state kinetics demonstrated that like Calpha and Cbeta, Cgamma phosphorylates substrates requiring basic amino acids at P-3 and P-2. However, Cgamma generally exhibited a lower Km and Vmax than Calpha for peptide substrates tested. Cgamma also exhibited a distinct pseudosubstrate specificity showing inhibition by homogeneous preparations of RIalpha and RIIalpha-subunits, but not by pure recombinant protein kinase inhibitors PKIalpha and PKIbeta, PKA-specific inhibitors. These studies suggest that Cgamma and Calpha exhibit differences in structure and function in vitro, supporting the hypothesis that functionally different C-subunit isozymes could diversify and/or fine-tune cAMP signal transduction downstream of PKA activation.  相似文献   

4.
The strength of the interaction between the catalytic and regulatory subunits in protein kinase A differs among species. The linker region from regulatory subunits is non-conserved. To evaluate the participation of this region in the interaction with the catalytic subunit, we have assayed its effect on the enzymatic properties of the catalytic subunit. Protein kinase A from three fungi, Mucor rouxii, Mucor circinelloides and Saccharomyces cerevisiae have been chosen as models. The R-C interaction is explored by using synthetic peptides of 8, 18 and 47 amino acids, corresponding to the R subunit autophosphorylation site plus a variable region toward the N terminus (0, 10, or 39 residues). The Km of the catalytic subunits decreased with the length of the peptide, while the Vmax increased. Viscosity studies identified product release as the rate limiting step for phosphorylation of the longer peptides. Pseudosubstrate derivatives of the 18 residue peptides did not display a competitive inhibition behavior toward either kemptide or a bona fide protein substrate since, at low relative pseudosubstrate/substrate concentration, stimulation of kemptide or protein substrate phosphorylation was observed. The behavior was mimicked by intact R. We conclude that in addition to its negative regulatory role, the R subunit stimulates C activity via distal interactions.  相似文献   

5.

Background  

Epidermal Growth Factor Receptor (EGFR) is a key target molecule in current treatment of several neoplastic diseases. Hence, in order to develop and improve current drugs targeting EGFR signalling, an accurate understanding of how this signalling pathway is regulated is required. It has recently been demonstrated that inhibition of cAMP-dependent protein kinase (PKA) induces a ligand-independent internalization of EGFR. Cyclic-AMP-dependent protein kinase consists of a regulatory dimer bound to two catalytic subunits.  相似文献   

6.
We present evidence for the existence of two forms of the catalytic (C) subunit of the cAMP-dependent protein kinase. A lambda gt-11 cDNA library constructed from poly(A)-rich RNA from the porcine kidney cell line, LLC-PK1, was screened using a 1.5-kb EcoRI fragment from a bovine cDNA for the C subunit. Two independent classes of cDNAs were identified on the basis of partial restriction map and sequence data. These two cDNAs, lambda CAT4 and lambda CAT3, apparently encode two forms of C subunit designated C alpha and C beta, respectively. The nucleotide sequence of the C alpha and C beta cDNAs revealed differences in the coding region and particularly in the 3' untranslated region. However, the deducted amino acid sequences of C alpha and C beta subunits were 96% homologous to the sequences so far determined. Specific probes from the 3' coding region of the two cDNA species were used to investigate C subunit mRNA expression in LLC-PK1 cells. Northern analysis showed a major mRNA species of 2.8 kb with the C alpha probe while the C beta probe detected two mRNA species of 5.0 kb and 3.8 kb. These data were supported by genomic blot analysis which showed distinct hybridization patterns with either the C alpha or C beta probes. All the available evidence suggests that at least two distinct genes encode the C subunit which are expressed in LLC-PK1 cells.  相似文献   

7.
The catalytic subunit of cAMP-dependent protein kinase contains two stable phosphorylation sites, Thr-197 and Ser-338 (Shoji, S., Titani, K., Demaille, J. G., and Fischer, E. H. (1979) J. Biol. Chem. 254, 6211-6214). Thr-197 is very resistant to dephosphorylation and thus cannot typically be autophosphorylated in vitro once the stable subunit is formed. Ser-338 is slowly dephosphorylated and can be rephosphorylated autocatalytically. In addition to these two stable phosphorylation sites, a new site of autophosphorylation, Ser-10, was identified. Phosphorylation at Ser-10 does not have a major effect on activity, and phosphates from Ser-10 or Ser-338 are not transferred to physiological substrates such as the type II regulatory subunit. Autophosphorylation at Ser-10 is associated with one of the two major isoelectric variants of the catalytic subunit. The form having the more acidic pI can be autophosphorylated at Ser-10 while the more basic form of the catalytic subunit cannot. Phosphorylation at Ser-10 does not account for the two isoenzyme forms. Since the reason for two isoelectric variants of the catalytic subunit is still unknown, it is not possible to provide a structural basis for the difference in accessibility of Ser-10 to phosphorylation. Either Ser-10 is not accessible in the more basic form of the catalytic subunit or some other type of post- or cotranslational modification causes Ser-10 to be a poor substrate. Whether the myristoyl group at the amino-terminal Gly is important for Ser-10 autophosphorylation remains to be established. The isoenzyme forms of the catalytic subunit do not correspond to the gene products coded for by the C alpha and C beta genes.  相似文献   

8.
9.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit.  相似文献   

10.
Protein kinase A (cAMP dependent protein kinase catalytic subunit, EC 2.7.11.11) binds simultaneously ATP and a phosphorylatable peptide. These structurally dissimilar allosteric ligands influence the binding effectiveness of each other. The same situation is observed with substrate congeners, which reversibly inhibit the enzyme. In this review these allosteric effects are quantified using the interaction factor, which compares binding effectiveness of ligands with the free enzyme and the pre-loaded enzyme complex containing another ligand. This analysis revealed that the allosteric effect depends upon structure of the interacting ligands, and the principle “better binding: stronger allostery” observed can be formalized in terms of linear free-energy relationships, which point to similar mechanism of the allosteric interaction between the enzyme-bound substrates and/or inhibitor molecules. On the other hand, the type of effect is governed by ligand binding effectiveness and can be inverted from positive allostery to negative allostery if we move from effectively binding ligands to badly binding compounds. Thus the outcome of the allostery in this monomeric enzyme is the same as defined by classical theories for multimeric enzymes: making the enzyme response more efficient if appropriate ligands bind.  相似文献   

11.
12.
Conformational changes of the cAMP-dependent protein kinase (PKA) catalytic (C) subunit are critical for the catalysis of gamma-phosphate transfer from adenosine 5'-triphosphate (ATP) to target proteins. Time-resolved fluorescence anisotropy (TRFA) was used to investigate the respective roles of Mg(2+), ATP, MgATP, and the inhibitor peptide (IP20) in the conformational changes of a 5,6-carboxyfluorescein succinimidyl ester (CF) labeled C subunit ((CF)C). TRFA decays were fit to a biexponential equation incorporating the fast and slow rotational correlation times phi(F) and phi(S). The (CF)C apoenzyme exhibited the rotational correlation times phi(F)=1.8+/-0.3 ns and phi(S)=20.1+/-0.6 ns which were reduced to phi(F)=1.1+/-0.2 ns and phi(S)=13.3+/-0.9 ns in the presence of MgATP. The reduction in rotational correlation times indicated that the (CF)C subunit adopted a more compact shape upon formation of a (CF)C.MgATP binary complex. Neither Mg(2+) (1-3 mM) nor ATP (0.4 mM) alone induced changes in the (CF)C subunit conformation equivalent to those induced by MgATP. The effect of MgATP was removed in the presence of ethylenediaminetetraacetic acid (EDTA). The addition of IP20 and MgATP to form the (CF)C x MgATP x IP20 ternary complex produced rotational correlation times similar to those of the (CF)C x MgATP binary complex. However, IP20 alone did not elicit an equivalent reduction in rotational correlation times. The results indicate that binding of MgATP to the C subunit may induce conformation changes in the C subunit necessary for the proper stereochemical alignment of substrates in the subsequent phosphorylation.  相似文献   

13.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

15.
16.
17.
18.
The inactivation of the catalytic subunit from rabbit muscle cAMP-dependent protein kinase by the chloromethyl ketones from lysine and phenylalanine (TLCK and TPCK; A. Kupfer et al. (1979) Proc. Natl. Acad. Sci. USA 76, 3073) has been confirmed for the same enzyme from rat muscle. However, other structurally not related protease inhibitors, antipain and leupeptin, did not inhibit the catalytic subunit from rat muscle. Thus it seems to be critical to attribute the interference of protease inhibitors with complex biological phenomena like tumorigenesis etc. generally to the inhibition of protein kinases.  相似文献   

19.
Two isoforms of the protein kinase A catalytic subunit, C and C, have previously been described in the mouse. We now report the cloning and characterization of a novel C-related sequence, Cx, from a murine genomic library. Cx is 89.8% identical to part of the C coding region, but lacks all of the introns present in this gene, suggesting that is arose via retroposition. The existence of several frameshift mutations, premature termination codons, and missense mutations at critical sites confirms that it is a pseudogene. Furthermore, we are unable to detect any expression. Homology with functional protein kinase genes commences exactly at the first intron splice junction in C, downstream of the expected translational start codon. Cx is also truncated at its 3 end by the interposition of two distinct, contiguous LINE-1 elements. By fluorescence in situ hybridization, we demonstrate that Cx is located on the X Chromosome (Chr), at band F3. This is displaced from its functional homologs, C and C, which we map to mouse Chrs 8 (band C3) and 3 (band H3), respectively.  相似文献   

20.
Artemis protein has irreplaceable functions in V(D)J recombination and nonhomologous end joining (NHEJ) as a hairpin and 5' and 3' overhang endonuclease. The kinase activity of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is necessary in activating Artemis as an endonuclease. Here we report that three basal phosphorylation sites and 11 DNA-PKcs phosphorylation sites within the mammalian Artemis are all located in the C-terminal domain. All but one of these phosphorylation sites deviate from the SQ or TQ motif of DNA-PKcs that was predicted previously from in vitro phosphorylation studies. Phosphatase-treated mammalian Artemis and Artemis that is mutated at the three basal phosphorylation sites still retain DNA-PKcs-dependent endonucleolytic activities, indicating that basal phosphorylation is not required for the activation. In vivo studies of Artemis lacking the C-terminal domain have been reported to be sufficient to complement V(D)J recombination in Artemis null cells. Therefore, the C-terminal domain may have a negative regulatory effect on the Artemis endonucleolytic activities, and phosphorylation by DNA-PKcs in the C-terminal domain may relieve this inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号