首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

The mechanism involved in the maintenance and differentiation of embryonic stem (ES) cells is incompletely understood.  相似文献   

2.
3.
4.
To obtain gene sequences controlling the early steps of amphibian neurogenesis, we have performed differential screening of a subtractive cDNA library prepared by a novel PCR-based method from a single presumptive neural plate of a Xenopus laevis late-gastrula embryo. As a result we have isolated a fragment of a novel homeobox gene (named XANF-1, for Xenopus anterior neural folds). This gene is expressed predominantly in the anterior part of the developing nervous system. Such preferential localization of XANF-1 mRNA is established from its initially homogenous distribution in ectoderm of early gastrula. This change in the expression pattern is conditioned by a differential influence of various mesoderm regions on ectoderm: anterior mesoderm activates XANF-1 expression in the overlying ectoderm, whereas posterior axial and ventral mesoderm areas inhibit it. The data obtained demonstrate for the first time that selection of genes for specific expression in the CNS of the early vertebrate embryo is affected not only by chordamesoderm (a neural inductor) but also by ventral mesoderm.  相似文献   

5.
To identify tyrosine kinases which play roles in mammalian early development, the 3' rapid amplification of cDNA ends (RACE) was performed on mouse embryonic stem (ES) cells. Among eight tyrosine kinases thus identified, we report here a novel tyrosine kinase, hyk (adhesion structures linked tyrosine kinase). The sequences of the 4.7 kb cDNA indicated the presence of RGD motif and three epidermal growth factor-like domains put between two immunoglobulin-like domains and three fibronectin type III domains in its extracellular region. It is strongly expressed in ES cells and later stages of embryos, but at low levels in midgestation embryos. It is also expressed at a low level in neural precursor cells from 10-day embryos, but at high levels in embryonic day 15 and neonatal brains. In adult tissues it is expressed ubiquitously.  相似文献   

6.
7.
8.
9.
Lewis X antigen (Le(X)) is a marker of embryonic stem cells, embryonal carcinoma cells and multipotential cells of early embryos in the mouse. Le(X) is carried by branched, high-molecular weight poly-N-acetyllactosamines (embryoglycan). While embryoglycan is present in human embryonal carcinoma cells, Le(X) is not expressed in human embryonic stem cells, embryonal carcinoma cells or inner cell mass cells. Instead, these cells express SSEA-3 and SSEA-4, both of which are carried by globo-series glycolipids. Le(X) is a marker of primordial germ cells or multipotential stem cells derived from primordial germ cells both in the mouse and human. In other species of vertebrates, Le(X) is widely expressed in early embryonic cells and primordial germ cells, but the mode of expression is not completely conserved among species. Le(X) is expressed in neural stem cells from both humans and mice. Hematopoietic stem cells are not reported to express the above carbohydrate markers. A marker of these cells is CD34, a membrane-bound sialomucin. Another sialomucin, CD164 (MGC-24v) is expressed in hemotopoietic progenitor cells. As a function of Le(X) in stem cells, the promotion of integrin action is proposed, based on analyses of glycoproteins with the marker, cDNA transfection experiments and the inhibitory effects of an anti-Le(X) antibody. Most probably, Le(X) antigen as well as poly-N-acetyllactosamines play roles in the interactions on the same membrane. On the other hand, O-linked oligosaccharides on CD34 and CD164 are probably involved in the regulation of cell adhesion and proliferation via intercellular recognition.  相似文献   

10.
Homeodomain proteins are characterized by a conserved domain with a helix-turn-helix motif. These proteins act as regulatory factors in tissue differentiation and proliferation. However, their role in the regulation of osteoblast differentiation is unknown. In this study we have identified and characterized a homeobox gene in osteoblast-like cells. This gene, termed rHox, was isolated from a cDNA library derived from rat osteoblast-like cells. The nucleotide sequence of the 1,375 base pair (bp) cDNA contains a noncoding leader sequence of 329 bp, a 735 bp open reading frame, and 312 bp of 3′ noncoding sequence. Sequence comparison demonstrates that rHox is identical to the mouse Pmx gene (also called MHox) at the amino acid level and 90% homologous at the nucleotide level. Both Southwestern blotting and gel shift analyses indicate that rHox has potential to bind both the collagen l α 1 and the osteocalcin promoters. Transfection experiments using an rHox expression vector showed a strong repression of target promoter activity, regardless of whether the target promoters contained homeodomain binding reponse elements. These data suggest that rHox is a potent negative regulator of gene expression, although the specific role of rHox in bone gene regulation remains to be determined. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
We report here the identification and characterization of a novel paired-like homeobox-containing gene (Ehox). This gene, identified in embryonic stem (ES) cells, is differentially expressed during in vitro ES cell differentiation. We have assessed Ehox function using the ES cell in vitro differentiation system. This has involved molecular and biological analyses of the effects of sense or antisense Ehox expression (using episomal vectors) on ES cell differentiation. Analysis of antisense Ehox-expressing ES cells indicates that they are unable to express marker genes associated with hematopoietic, endothelial, or cardiac differentiation following removal of leukemia inhibitory factor. In contrast, overexpression of Ehox using the sense construct accelerated the appearance of these differentiation markers. ES cell self-renewal and differentiation assays reveal that inhibition of Ehox activity results in the maintenance of a stem cell phenotype in limiting concentrations of leukemia inhibitory factor and the almost complete impairment of the cardiomyocyte differentiation capacity of these cells. We therefore conclude that Ehox is a novel homeobox-containing gene that is essential for the earliest stages of murine ES cell differentiation.  相似文献   

14.
15.
16.
17.
Evidence from diverse organisms, including humans, suggests that the DAZ (Deleted in Azoospermia) gene and a closely related homolog, DAZL (DAZ-like), are required early in germ cell development to maintain initial germ cell populations. Here we report the identification and characterization of the DZIP (DAZ-Interacting Protein) gene, which encodes at least three different protein isoforms that contain a C2H2 zinc-finger domain. The DZIP gene is expressed predominantly in human embryonic stem cells and fetal and adult germ cells; moreover, two DZIP protein isoforms colocalize with DAZ and/or DAZL proteins in these tissues. Finally, we provide evidence indicating that DZIP may associate with DAZ and its other cofactors in an RNA-binding protein complex that functions in both ES cells and germ cells.  相似文献   

18.
The homeobrain (hbn) gene is a new paired-like homeobox gene which is expressed in the embryonic brain and the ventral nerve cord. Expression of homeobrain initiates during the blastoderm stage in the anterior dorsal head primordia and the gene is persistently expressed in these cells which form parts of the brain during later embryonic stages. An additional weaker expression pattern is detected in cells of the ventral nerve cord from stage 11 on. The homeodomain in the Homeobrain protein is most similar to the Drosophila proteins DRx, Aristaless and Munster. In addition, the localized brain expression patterns of homeobrain and DRx resemble each other. Two other homeobox genes, orthopedia and DRx are clustered in the 57B region along with homeobrain. The current evidence indicates that homeobrain, DRx and orthopedia form a homeobox gene cluster in which all the members are expressed in specific embryonic brain subregions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号