首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The research aimed to verify the important physiological effect of nitrogen (N) on plants exposed to cadmium (Cd). The poplar plants were grown in a Hoagland nutrient solution and treated with extra N, Cd, and N + Cd. After treatment, plant growth and chlorophyll content were recorded. The oxidative stress, the activity of antioxidant enzymes, and the expression of related genes were also examined. The results indicated the plants treated with sole Cd presented obvious toxicity symptoms, i.e. growth inhibition, reactive oxygen species accumulation, and chlorophyll content decrement. However, when N was added to the plants under Cd stress, plant growth was enhanced, chlorophyll synthesis was promoted, and the oxidative stress was alleviated. Further, the expression of antioxidant enzymes genes was upregulated by N. The results indicated that N partially reversed the toxic effect of Cd on poplar plants, which can provide new methodology to enhance the phytoremediation technology for heavy metal pollution soil.  相似文献   

2.
The aim of this study was to investigate the protective role of Fe in providing tolerance against Cd-stress in root nodules of Vigna radiata, because Cd may be more deleterious in the absence of Fe. Biochemical, histological and proteomic responses to Cd-exposure (50?μM CdCl2) were examined under Fe-sufficient (+Fe/+Cd) or Fe-deficient (?Fe/+Cd) soils by comparing non ?Cd exposed control (+Fe/?Cd) plants with additional control of Fe-deficient and non-exposed Cd plants (?Fe/?Cd). Cd-exposure negatively affected on growth and some physiological parameters of host plant and nodules, and also induced oxidative stress with the decline of antioxidative enzyme activities. The negative effects of Cd-exposure in +Fe/+Cd plants were much less than those in ?Fe/+Cd and ?Fe/?Cd ones. When compared with ?Fe/Cd and ?Fe/?Cd plants, a marked improvement of bacteriod development and cell division was observed and deformation of cell wall remarkably alleviated in the nodules of (+Fe/Cd) plants. Proteomic study revealed that 20 proteins were differentially expressed by Fe/Cd combined treatment. Eleven proteins of interest were identified and classified as precursor for RNA metabolism, storage of seeds, hypothetical proteins, and unknown proteins. These results indicate that Fe plays a pivotal role in alleviating Cd-stress, as evidence by reduction in oxidative damage and protection of cell wall and bacteriods in nodules.  相似文献   

3.
Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light‐ and dark‐grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress‐related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light‐grown cells were more sensitive to heavy metal toxicity than dark‐grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism‐related proteins increased in relative abundance both in light‐ and dark‐grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti‐oxidative processes were decreased both in light‐ and dark‐grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light‐dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.  相似文献   

4.
Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the present study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity and the abundance of proteins involved in carbon assimilation and antioxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light (HL) intensity conditions (i.e. single stress). The underlying mechanisms for the increased growth in conditions of HL and sufficient nitrogen were a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions shifts plants from growth to survival by displaying anthocyanin accumulation and an increased number of proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants development from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors.  相似文献   

5.
Abstract: The effects of cold acclimation on primary metabolism in actively growing poplar ( Populus tremula L. × P. tremuloides Michaux) were studied. Three-month-old poplar plants were exposed to chilling stress (4 °C) and compared to plant material kept at a control temperature (23 °C). This treatment did not affect the survival of the plants but growth was almost stopped. The freezing tolerance of the adult leaves increased from - 5.7 °C for the control plants to - 9.8 °C after 14 days of exposure to 4 °C. During acclimation, the evolution of soluble carbohydrate contents was followed in the leaves. Sucrose, glucose, fructose and trehalose accumulated rapidly under chilling conditions, while raffinose content increased after one week at 4 °C. Proteomic analyses, by bidimensional electrophoresis, performed during this stage revealed that a large number of proteins had higher expression, while much less proteins disappeared or had a lower abundance. MALDI-TOF-MS analyses enabled ca. 30 spots to be proposed for candidate proteins. Among the accumulating or appearing proteins proposed, about a third presented similarities with chaperone-like proteins (heat shock proteins, chaperonins). In addition, dehydrins and other late embryogenesis abundant proteins, i.e., stress-responsive proteins, detoxifying enzymes, proteins involved in stress signalling and transduction pathways were also activated or newly synthesised. Finally, cold exposure induced a decrease in the candidate proteins involved in cell wall or energy production.  相似文献   

6.
Streptomyces coelicolor and Lemna minor were used as a model to study the modulation of bacterial gene expression during plant-streptomycete interactions. S. coelicolor was grown in minimal medium with and without L. minor fronds. Bacterial proteomes were analyzed by two-dimensional gel electrophoresis, and a comparison of the two culture conditions resulted in identification of 31 proteins that were induced or repressed by the presence of plant material. One-half of these proteins were identified by peptide mass fingerprinting by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. The induced proteins were involved in energetic metabolism (glycolysis, pentose phosphate pathway, oxidative phosphorylation), protein synthesis, degradation of amino acids, alkenes, or cellulose, tellurite resistance, and growth under general physiological or oxidative stress conditions. The repressed proteins were proteins synthesized under starvation stress conditions. These results suggest that root exudates provide additional carbon sources to the bacteria and that physiological adaptations are required for efficient bacterial growth in the presence of plants.  相似文献   

7.
8.
9.
Streptomyces coelicolor and Lemna minor were used as a model to study the modulation of bacterial gene expression during plant-streptomycete interactions. S. coelicolor was grown in minimal medium with and without L. minor fronds. Bacterial proteomes were analyzed by two-dimensional gel electrophoresis, and a comparison of the two culture conditions resulted in identification of 31 proteins that were induced or repressed by the presence of plant material. One-half of these proteins were identified by peptide mass fingerprinting by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. The induced proteins were involved in energetic metabolism (glycolysis, pentose phosphate pathway, oxidative phosphorylation), protein synthesis, degradation of amino acids, alkenes, or cellulose, tellurite resistance, and growth under general physiological or oxidative stress conditions. The repressed proteins were proteins synthesized under starvation stress conditions. These results suggest that root exudates provide additional carbon sources to the bacteria and that physiological adaptations are required for efficient bacterial growth in the presence of plants.  相似文献   

10.
The study was conducted to examine differential proteomic responses to water-deficit stress in hybrid bermudagrass [Cynodon dactylon (L.) Pers. ×Cynodon transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299). Plants were exposed to water-deficit stress for 15 days by withholding irrigation in a growth chamber. Leaf electrolyte leakage increased and photochemical efficiency and relative water content declined under water-deficit stress, but the extent of changes in each of the physiological parameters for 'Tifway' was less pronounced than those for 'C299'. Total proteins of leaves were extracted from well-watered and water-deficit plants and separated by two-dimensional gel electrophoresis. Of the 750 protein spots reproducibly detected, 32 proteins had increases in the abundance and 22 proteins exhibited decreases in the abundance in at least one genotype under water-deficit stress. A significantly higher number of proteins were found to accumulate in 'Tifway' than in 'C299' and 16 proteins with increasing abundance were detected only in 'Tifway' under water-deficit stress. All stress-responsive proteins were subjected to mass spectrometry analysis, which were mainly involved in metabolism, energy, cell growth/division, protein synthesis and stress defense. Functional analysis of differential drought-responsive proteins between the two genotypes suggests that the superior water-deficit tolerance in 'Tifway' bermudagrass could be mainly associated with less severe decline in the abundance level of proteins involved in photosynthesis (chlorophyll a-b, ATP synthase subunit alpha, phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and greater increase in the abundance level of antioxidant defense proteins (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase and peroxiredoxin), demonstrating that maintaining photosynthesis and active antioxidant defense mechanisms may play a critical role in C(4) grass adaptation to water-deficit stress.  相似文献   

11.
Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.  相似文献   

12.
Male and female poplar ( Populus cathayana Rehd.) cuttings respond differently to salinity stress. To understand these differences better, comparative morphological, physiological, and proteomics analyses were performed. Treatments with different concentrations of NaCl applied to male and female poplar cuttings for 4 weeks showed that females reacted more negatively at the morphological and physiological levels than did males, visible as shriveled leaves, decreased growth, lowered photosynthetic capacities, and greater Na(+) accumulation. The proteome analysis identified 73 proteins from 82 sexually related salt-responsive spots. They were involved in photosynthesis, protein folding and assembly, synthesis and degradation, carbon, energy and steroid metabolism, plant stress and defense, redox homeostasis, signal transduction, and so forth. The sex-related changes of these proteins were consistent with the different morphological and physiological responses in males and females. In conclusion, the higher salt resistance of male P. cathayana cuttings is related to higher expression and lower degradation of proteins in the photosynthetic apparatus, more effective metabolic mechanism and protective system, and greater capacity of hydrogen peroxide scavenging. This research allows us to further understand the possible different management strategies of cellular activities in male and female Populus when confronted by salt stress.  相似文献   

13.
Hydrogen peroxide (H2O2) plays a dual role in plants as the toxic by-product of normal cell metabolism and as a regulatory molecule in stress perception and signal transduction. However, a clear inventory as to how this dual function is regulated in plants is far from complete. In particular, how plants maintain survival under oxidative stress via adjustments of the intercellular metabolic network and antioxidative system is largely unknown. To investigate the responses of rice seedlings to H2O2 stress, changes in protein expression were analyzed using a comparative proteomics approach. Treatments with different concentrations of H2O2 for 6 h on 12-day-old rice seedlings resulted in several stressful phenotypes such as rolling leaves, decreased photosynthetic and photorespiratory rates, and elevated H2O2 accumulation. Analysis of approximately 2000 protein spots on each two-dimensional electrophoresis gel revealed 144 differentially expressed proteins. Of them, 65 protein spots were up-regulated, and 79 were down-regulated under at least one of the H2O2 treatment concentrations. Furthermore 129 differentially expressed protein spots were identified by mass spectrometry to match 89 diverse protein species. These identified proteins are involved in different cellular responses and metabolic processes with obvious functional tendencies toward cell defense, redox homeostasis, signal transduction, protein synthesis and degradation, photosynthesis and photorespiration, and carbohydrate/energy metabolism, indicating a good correlation between oxidative stress-responsive proteins and leaf physiological changes. The abundance changes of these proteins, together with their putative functions and participation in physiological reactions, produce an oxidative stress-responsive network at the protein level in H2O2-treated rice seedling leaves. Such a protein network allows us to further understand the possible management strategy of cellular activities occurring in the H2O2-treated rice seedling leaves and provides new insights into oxidative stress responses in plants.  相似文献   

14.
To gain a comprehensive understanding of plant response to Cd, physiological and proteomic changes in wheat (Triticum aestivum L.) leaves exposed to a range of Cd concentrations (10, 100 and 200 μM) were investigated. Leaf elongation was decreased, whereas the H2O2 and malondialdehyde content increased significantly at higher Cd concentrations. Changes in protein profiles were analyzed by two-dimensional electrophoresis. Twenty-one proteins which showed 1.5-fold change in protein abundance in response to Cd were identified. These proteins can be functionally grouped into three groups: 1) oxidative stress response, 2) photosynthesis and sugar metabolism and 3) protein metabolism and others. These results provide a new insight into our understanding of the molecular basis of heavy metal response in plants.  相似文献   

15.
16.
Cadmium-induced changes in the growth and oxidative metabolism of pea plants   总被引:71,自引:0,他引:71  
The effect of growing pea (Pisum sativum L.) plants with CdCl(2) (0-50 microM) on different plant physiological parameters and antioxidative enzymes of leaves was studied in order to know the possible involvement of this metal in the generation of oxidative stress. In roots and leaves of pea plants Cd produced a significant inhibition of growth as well as a reduction in the transpiration and photosynthesis rate, chlorophyll content of leaves, and an alteration in the nutrient status in both roots and leaves. The ultrastructural analysis of leaves from plants grown with 50 microM CdCl(2), showed cell disturbances characterized by an increase of mesophyll cell size, and a reduction of intercellular spaces, as well as severe disturbances in chloroplast structure. Alterations in the activated oxygen metabolism of pea plants were also detected, as evidenced by an increase in lipid peroxidation and carbonyl-groups content, as well as a decrease in catalase, SOD and, to a lesser extent, guaiacol peroxidase activities. Glutathione reductase activity did not show significant changes as a result of Cd treatment. A strong reduction of chloroplastic and cytosolic Cu,Zn-SODs by Cd was found, and to a lesser extent of Fe-SOD, while Mn-SOD was only affected by the highest Cd concentrations. Catalase isoenzymes responded differentially, the most acidic isoforms being the most sensitive to Cd treatment. Results obtained suggest that growth of pea plants with CdCl(2) can induce a concentration-dependent oxidative stress situation in leaves, characterized by an accumulation of lipid peroxides and oxidized proteins as a result of the inhibition of the antioxidant systems. These results, together with the ultrastructural data, point to a possible induction of leaf senescence by cadmium.  相似文献   

17.
Sharka, a disease caused by plum pox virus (PPV), has a significant economic impact on fruit tree production. In this work, we analysed the effect of (2,1,3)‐benzothiadiazole (BTH) and L‐2‐oxo‐4‐thiazolidine‐carboxylic acid (OTC) on plant growth and virus content. OTC reduced sharka symptom, stimulated plant growth and alleviated PPV‐induced oxidative stress, indicated by a lack of changes in some oxidative stress parameters. PPV infection reduced chloroplast electron transport efficiency. However, in the presence of BTH or OTC, no changes in the chlorophyll fluorescence parameters were observed. PPV produced an alteration in chloroplast ultrastructure, giving rise to a decrease in starch contents that was less dramatic in OTC‐treated plants. Furthermore, PPV reduced the abundance of proteins associated with photosynthesis, carbohydrate and amino acid metabolism and photorespiration. These changes did not take place in OTC‐treated plants, and increases in the expression of proteins related with the aforementioned processes, including ADP‐glucose pyrophosphorylase, were produced, which correlated with the lower decrease in starch contents observed in PPV‐infected plants treated with OTC. The results suggested that OTC treatment provides protection to the photosynthetic machinery and/or the chloroplast metabolism in PPV‐infected peaches. Thus, OTC could have practical implications in agriculture in improving the vigour of different plant species as well as in immunizing plants against pathogens.  相似文献   

18.
The present study highlights the protective role of β-aminobutyric acid (BABA) in alleviating cadmium (Cd) stress in soybean. Proteomic analyses revealed that out of 66 differentially abundant protein spots in response to Cd challenge, 17 were common in the leaves of BABA-primed and non-primed plants. Oxygen-evolving enhancer protein 1 and ribulose bisphosphate carboxylase small chain 1 were detected in increase abundance in both groups of leaves. Among the 15 commonly decreased protein spots, the relative intensity levels of heat shock cognate 70-kDa protein, carbonic anhydrase, methionine synthase, and glycine dehydrogenase were partially restored after BABA treatment. Moreover, BABA priming significantly enhanced the abundance of the defense-related protein peroxiredoxin and glycolytic enzymes in response to Cd exposure. Additionally, the impact of Cd on the physiological state of BABA-primed and non-primed plants was analyzed using a biophoton technique. The finding of comparatively low biophoton emission in BABA-primed leaves under Cd stress indicates that these plants experienced less oxidative damage than that of non-primed plants. Proteomic study coupled with biophoton analysis reveals that BABA pretreatment helps the plants to combat Cd stress by modulating plants' defence mechanism as well as activating cellular detoxification system to protect the cells from Cd induced oxidative stress damages.  相似文献   

19.
A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.  相似文献   

20.
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号