首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxal isonicotinoyl hydrazone (PIH) analogues are effective iron chelators in vivo and in vitro, and may be of value for the treatment of secondary iron overload. The sensitivity of Jurkat cells to Fe-chelator complexes was enhanced several-fold by the depletion of the antioxidant glutathione, indicating the role of oxidative stress in their toxicity. K562 cells loaded with eicosapentaenoic acid, a fatty acid particularly susceptible to oxidation, were also more sensitive to the toxic effects of the Fe complexes, and toxicity was proportional to lipid peroxidation. Thus Fe-chelator complexes cause oxidative stress, which may be a major component of their toxicity. As was the case for their Fe complexes, the toxicity of PIH analogues was enhanced by glutathione depletion of Jurkat cells and eicosapentaenoic acid-loading of K562 cells. Thus the toxicity of the chelators themselves is also enhanced by compromised cellular redox status. In addition, the toxicity of the chelators was diminished by culturing Jurkat cells under hypoxic conditions, which may limit the production of the reactive oxygen species that initiate oxidative stress. A significant part of the toxicity of the chelators may be due to intracellular formation of Fe-chelator complexes, which oxidatively destroy the cell.  相似文献   

2.
Fatty acid has been reported to be associated with cardiovascular diseases and cancer, but the possible mechanism remains unclear. Here, we reported a novel mechanism for the permissive role of fatty acid on iron intracellular translocation and subsequent oxidative injury. In vitro study from endothelial cells showed that iron alone had little effect, whereas in combination with PA (palmitic acid), iron-mediated toxicity was markedly potentiated, as reflected in mitochondrial dysfunction, cell death, apoptosis, and DNA mutation. We also showed that PA not only facilitated iron translocation into cells through a transferrin-receptor (TfR)-independent mechanism, but also translocated iron into mitochondria; the subsequent intracellular iron overload resulted in reactive oxygen species (ROS) overgeneration and lipid oxidation. Further investigation revealed that PA-facilitated iron translocation is due to Fe/PA-mediated extracellular oxidative stress and the subsequent membrane damage with increased membrane permeability. Fe/PA-mediated toxic effects were reduced in rho0 cells lacking mitochondrial DNA or by antioxidant enzyme SOD, especially mitochondrially localized MnSOD, suggesting a permissive role of PA for iron deposition on the vascular wall and its subsequent toxicity via mitochondrial oxidative stress. This observation was confirmed in vivo in mice, wherein higher vascular iron deposition and accompanying superoxide release were observed in the presence of a high-fat diet with iron administration.  相似文献   

3.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

4.
Chronic ethanol consumption causes oxidative damage in the liver, and induction of cytochrome P450 2E1 (CYP2E1) is one pathway involved in oxidative stress produced by ethanol. The hepatic accumulation of iron and polyunsaturated fatty acids significantly contributes to ethanol hepatotoxicity in the intragastric infusion model of ethanol treatment. The objective of this study was to analyze the effect of the green tea flavanol epigallocatechin-3-gallate (EGCG), which has been shown to prevent alcohol-induced liver damage, on CYP2E1-mediated toxicity in HepG2 cells overexpressing CYP2E1 (E47 cells). Treatment of E47 cells with arachidonic acid plus iron (AA + Fe) was previously reported to produce synergistic toxicity in E47 cells by a mechanism dependent on CYP2E1 activity and involving oxidative stress and lipid peroxidation. EGCG protected E47 cells against toxicity and loss of viability induced by AA+Fe; EGCG had no effect on CYP2E1 activity. Prevention of this toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species, a decrease in lipid peroxidation, and maintenance of intracellular glutathione in cells challenged by AA+Fe in the presence of EGCG. AA+Fe treatment caused a decline in the mitochondrial membrane potential, which was also blocked by EGCG. In conclusion, EGCG exerts a protective action on CYP2E1-dependent oxidative stress and toxicity that may contribute to preventing alcohol-induced liver injury, and may be useful in preventing toxicity by various hepatotoxins activated by CYP2E1 to reactive intermediates.  相似文献   

5.
Bone morphogenetic protein-7 (BMP-7) protects kidneys from diabetic nephropathy (DN), and high glucose (HG)-induced oxidative stress is involved in DN. We investigated the antioxidative ability of BMP-7 using HG-treated mesangial cells. We treated rat mesangial cells (RMCs) with recombinant human BMP-7 (rhBMP-7) and examined changes in reactive oxygen species (ROS) levels and intracellular signals in response to HG-induced oxidative stress. rhBMP-7 decreased the level of ROS in HG-treated RMCs. In contrast, lowering endogenous BMP-7 by siRNA or BMP receptor II (BMP-RII) by anti-BMP-RII antibodies increased the level of ROS in HG-treated RMCs. rhBMP-7 increased Smad-1,5,8 phosphorylation, decreased PKCζ and c-Jun N-terminal kinase (JNK) phosphorylation, and decreased fibronectin and collagen IV synthesis in HG-treated RMCs. In conclusion, we found that BMP-7 could protect mesangial cells from HG-induced oxidative stress by activating BMP-RII. The antioxidative activity of BMP-7 was primarily due to inhibition of PKCζ, JNK phosphorylation, and c-jun activation.  相似文献   

6.
Free iron has been assumed to potentiate oxygen toxicity by generating reactive oxygen species (ROS) via the iron-catalyzed Haber-Weiss reaction, leading to oxidative stress. ROS-mediated iron cytotoxicity may trigger apoptotic cell death. In the present study, we used iron treatment of organotypic cultures of hippocampal slices to study potential mechanisms involved in iron-induced neuronal damage. Exposure of mature hippocampal slices to ferrous sulfate resulted in concentration- and time-dependent cell death. After iron treatment, markers of ROS formation and lipid peroxidation, i.e. intensity of dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS), were significantly increased. Levels of cytochrome c were increased while levels of pro-caspase-9 and pro-caspase-3 were decreased in cytosolic fractions of iron-treated hippocampal slice cultures. Treatment of cultured slices with a synthetic catalytic ROS scavenger, EUK-134, provided between 50 and 70% protection against various parameters of cell damage and markers of oxidative stress. In addition, inhibition of caspase-3 activity by Ac-DEVDcho partially protected cells from iron toxicity. The combination of EUK-134 and Ac-DEVDcho resulted in an almost complete blockade of iron-induced damage. These results indicate that iron elicits cellular damage predominantly by oxidative stress, and that ROS-mediated iron toxicity may involve cytochrome c- and caspase-3-dependent apoptotic pathways.  相似文献   

7.
Iron, a key element in Fenton chemistry, causes oxygen-related toxicity to cells of most living organisms. Helicobacter pylori is a microaerophilic bacterium that infects human gastric mucosa and causes a series of gastric diseases. Exposure of H. pylori cells to air for 2 h elevated the level of free iron by about 4-fold as measured by electron paramagnetic resonance spectroscopy. H. pylori cells accumulated more free iron as they approached stationary phase growth, and they concomitantly suffered more DNA damage as indicated by DNA fragmentation analysis. Relationships between the intracellular free iron level, specific oxidative stress enzymes, and DNA damage were identified, and new roles for three oxidative stress-combating enzymes in H. pylori are proposed. Mutant cells defective in either catalase (KatA), in superoxide dismutase (SodB) or in alkyl hydroperoxide reductase (AhpC) were more sensitive to oxidative stress conditions; and they accumulated more free (toxic) iron; and they suffered more DNA fragmentation compared to wild type cells. A significant proportion of cells of sodB, ahpC, or katA mutant strains developed into the stress-induced coccoid form or lysed; they also contained significantly higher amounts of 8-oxo-guanine associated with their DNA, compared to wild type cells.  相似文献   

8.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

9.
Iron is a transition metal and essential constituent of almost all living cells and organisms. As component of various metalloproteins it is involved in critical biochemical processes such as transport of oxygen in tissues, electron transfer reactions during respiration in mitochondria, synthesis and repair of DNA, metabolism of xenobiotics, etc. However, when present in excess within cells and tissues, iron disrupts redox homeostasis and catalyzes the propagation of reactive oxygen species (ROS), leading to oxidative stress. ROS are critical for physiological signaling pathways, but oxidative stress is associated with tissue injury and disease. At the cellular level, oxidative stress may lead to ferroptosis, an iron-dependent form of cell death. In this review, we focus on the intimate relationship between iron metabolism and oxidative stress in health and disease. We discuss aspects of redox- and iron-mediated signaling, toxicity, ferroptotic cell death, homeostatic pathways and pathophysiological implications.  相似文献   

10.
Intestinal epithelial cells have an active apical iron uptake system that is involved in the regulated absorption of iron. By the action of this system, intestinal cells acquire increasing amounts of iron with time. Since intracellular reactive iron is a source of free radicals and a possible cause of colon carcinoma, this study analyzed the oxidative damages generated by iron accumulation in Caco-2 cells. Cells cultured with increasing concentrations of iron increased both total intracellular iron and the reactive iron pool, despite an active IRE/IRP system, which regulates intracellular iron levels. Increasing concentrations of iron resulted in increased protein oxidative damage, as shown by the immunoreactivity for 4-hydroxy-2-nonenal-modified proteins, and markedly induced DNA oxidation determined by 8-hydroxy-2'-deoxyguanidine production. Iron also impaired cell viability, resulting in increased cell death after 6 days of culture. In summary, iron accumulation by intestinal Caco-2 cells correlated with oxidative damage to proteins and DNA. Oxidative damage finally resulted in loss of cell viability. The Fe-induced oxidative damage observed may be relevant in understanding the cascade of events associated with iron-mediated colon carcinogenesis.  相似文献   

11.
12.
Iron overload has recently been connected with bone mineral density in osteoporosis. However, to date, the effect of iron overload on osteoblasts remains poorly understood. The purpose of this study is to examine osteoblast biological activity under iron overload. The osteoblast cells (hFOB1.19) were cultured in a medium supplemented with different concentrations (50, 100, and 200 μM) of ferric ammonium citrate as a donor of ferric ion. Intracellular iron was measured with a confocal laser scanning microscope. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescin diacetate fluorophotometry. Osteoblast biological activities were evaluated by measuring the activity of alkaline phosphatase (ALP) and mineralization function. Results indicated that iron overload could consequently increase intracellular iron concentration and intracellular ROS levels in a concentration-dependent manner. Additionally, ALP activity was suppressed, and a decline in the number of mineralized nodules was observed in in vitro cultured osteoblast cells. According to these results, it seems that iron overload probably inhibits osteoblast function through higher oxidative stress following increased intracellular iron concentrations.  相似文献   

13.
High glucose (HG)‐induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co‐transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG‐induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence‐associated beta‐galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT‐PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2‐NBD‐glucose. HG increased ECs senescence markers and oxidative stress, down‐regulated eNOS expression and NO formation, and induced the expression of VCAM‐1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX‐4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG‐induced ECs senescence and SGLT1 and 2 expression. Thus, HG‐induced ECs ageing is driven by the local angiotensin system via the redox‐sensitive up‐regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.  相似文献   

14.
15.
Aluminum (Al) is a metal toxin that has been implicated in the etiology of a number of diseases including Alzheimer's, Parkinson's, dialysis encephalopathy, and osteomalacia. Al has been shown to exert its effects by disrupting lipid membrane fluidity, perturbing iron (Fe), magnesium, and calcium homeostasis, and causing oxidative stress. However, the exact molecular targets of aluminum's toxicity have remained elusive. In the present review, we describe how the use of a systems biology approach in cultured hepatoblastoma cells (HepG2) allowed the identification of the molecular targets of Al toxicity. Mitochondrial metabolism is the main site of the toxicological action of Al. Fe-dependent and redox sensitive enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) are dramatically decreased by Al exposure. In an effort to compensate for diminished mitochondrial function, Al-treated cells stabilize hypoxia inducible factor-1α (HIF-1α) to increase ATP production by glycolysis. Additionally, Al toxicity leads to an increase in intracellular lipid accumulation due to enhanced lipogenesis and a decrease in the β-oxidation of fatty acids. Central to these effects is the alteration of α-ketoglutarate (KG) homeostasis. In Al-exposed cells, KG is preferentially used to quench ROS leading to succinate accumulation and HIF-1α stabilization. Moreover, the channeling of KG to combat oxidative stress leads to a reduction of l-carnitine biosynthesis and a concomitant decrease in fatty acid oxidation. The fluidity and interaction of these metabolic modules and the implications of these findings in liver-related disorders are discussed herein.  相似文献   

16.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

17.
d -galactosamine ( d -GalN) toxicity is a useful experimental model of liver failure in human. It has been previously observed that PGE 1 treatment reduced necrosis and apoptosis induced by d -GalN in rats. Primary cultured rat hepatocytes were used to evaluate if intracellular oxidative stress was involved during the induction of apoptosis and necrosis by d -GalN (0-40 mM). Also, the present study investigated if PGE 1 (1 μM) was equally potent reducing both types of cell death. The presence of hypodiploid cells, DNA fragmentation and caspase-3 activation were used as a marker of hepatocyte apoptosis. Necrosis was measured by lactate dehydrogenase (LDH) release. Oxidative stress was evaluated by the intracellular production of hydrogen peroxide (H 2 O 2 ), the disturbances on the mitochondrial transmembrane potential (MTP), thiobarbituric-reacting substances (TBARS) release and the GSH/GSSG ratio. Data showed that intermediate range of d -GalN concentrations (2.5-10 mM) induced apoptosis in association with a moderate oxidative stress. High d -GalN concentration (40 mM) induced a reduction of all parameters associated with apoptosis and enhanced all those related to necrosis and intracellular oxidative stress, including a reduction of GSH/GSSG ratio and MTP in comparison with d -GalN (2.5-10 mM)-treated cells. Although PGE 1 reduced apoptosis induced by d -GalN, it was not able to reduce the oxidative stress and cell necrosis induced by the hepatotoxin in spite to its ability to abolish the GSH depletion.  相似文献   

18.
Iron oxide particles are a promising marker in molecular magnetic resonance imaging. They are used to label distinct cell populations either in vitro or in vivo. We investigated for the first time whether small citrate-coated very small superparamagnetic iron oxide particles (VSOPs) can lead to an increase in cellular oxidative stress. We incubated rat macrophages (RAW) in vitro with iron oxide particles. We observed a massive uptake of VSOPs measured both with atomic absorption spectroscopy and with NMR, which could be visualized by confocal laser scanning microscopy. After incubation, cells were lysed and the levels of malonyldialdehyde (MDA) and protein carbonyls were determined. We found a significant increase in both MDA and protein carbonyl levels after incubation with the particles. Surprisingly, 24 h after incubation, a significant indication of oxidative stress could no longer be observed. The increase in oxidative stress seems to be transient and closely linked to the incubation procedure. The iron chelator desferal and the intracellular spin trap PBN caused a significant reduction in oxidative stress to almost control levels. This indicates that the augmentation of oxidative stress is closely linked to the free iron during incubation. Proliferation assays showed that incorporation of VSOPs did not lead to long-term cytotoxic effects even though the iron oxide particles remained in the cell. Magnetic labeling of cells with VSOPs seems to cause transient oxidative conditions not affecting cellular viability and seems to be a usable approach for molecular magnetic resonance imaging.  相似文献   

19.
d -galactosamine ( d -GalN) toxicity is a useful experimental model of liver failure in human. It has been previously observed that PGE 1 treatment reduced necrosis and apoptosis induced by d -GalN in rats. Primary cultured rat hepatocytes were used to evaluate if intracellular oxidative stress was involved during the induction of apoptosis and necrosis by d -GalN (0-40 mM). Also, the present study investigated if PGE 1 (1 &#119 M) was equally potent reducing both types of cell death. The presence of hypodiploid cells, DNA fragmentation and caspase-3 activation were used as a marker of hepatocyte apoptosis. Necrosis was measured by lactate dehydrogenase (LDH) release. Oxidative stress was evaluated by the intracellular production of hydrogen peroxide (H 2 O 2 ), the disturbances on the mitochondrial transmembrane potential (MTP), thiobarbituric-reacting substances (TBARS) release and the GSH/GSSG ratio. Data showed that intermediate range of d -GalN concentrations (2.5-10 mM) induced apoptosis in association with a moderate oxidative stress. High d -GalN concentration (40 mM) induced a reduction of all parameters associated with apoptosis and enhanced all those related to necrosis and intracellular oxidative stress, including a reduction of GSH/GSSG ratio and MTP in comparison with d -GalN (2.5-10 mM)-treated cells. Although PGE 1 reduced apoptosis induced by d -GalN, it was not able to reduce the oxidative stress and cell necrosis induced by the hepatotoxin in spite to its ability to abolish the GSH depletion.  相似文献   

20.
Redox-active iron mediates amyloid-beta toxicity   总被引:12,自引:0,他引:12  
While amyloid-beta toxicity is mediated by oxidative stress and can be attenuated by antioxidants, the actual biochemical mechanism underlying neurotoxicity remains to be established. However, since aggregated amyloid-beta can interact with transition metals, such as iron, both in vitro and in vivo, we suspected that bound iron might be the mediator of toxicity such that holo- and apo-amyloid would have differential effects on cellular viability. Here we demonstrate that when amyloid-beta is pretreated with the iron chelator deferoxamine, neuronal toxicity is significantly attenuated while conversely, incubation of holo-amyloid-beta with excess free iron restores toxicity to original levels. These data, taken together with the known sequelae of amyloid-beta, suggest that the toxicity of amyloid-beta is mediated, at least in part, via redox-active iron that precipitates lipid peroxidation and cellular oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号