首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The monophoton counting technique was used to measure nanosecond time-resolved fluorescence emission spectra of 2-p-toluidino-naphthalene-6-sulfonate (2,6 p-TNS) adsorbed to lipid bilayer vesicles. A time-dependent red shift in the emission maximum was observed and the rate of this red shift was shown to be temperature dependent. Analysis of fluorescence decay curves obtained at different emission wavelengths indicates that the time-dependent spectral shifts are due to an excited-state reaction such as solvent relaxation or an excited-state interaction between the chromophore and a polar residue of the phospholipid.  相似文献   

2.
Nanosecond time-resolved emission spectra (TRES) are fluorescence emission spectra obtained at discrete times during the fluorescence decay. The complete data-set obtainable is a surface representing the intensity at all wavelengths and times during the emission decay time. When 2-p-toluidinonaphthalene-6-sulfonate (2,6 p-TNS) is adsorbed to egg lecithin vesicles, an excited-state reaction associated with energetic changes of the emitting species occurs on the nanosecond time scale. Convolution of the fluorescence decay with the excitation response introduces an artifact in the time-dependent spectra. A precedure is described by which this artifact can be eliminated. The data for the generation of time-resolved emission spectra are obtained with a computer-interfaced instrument based on the single-photon counting method.  相似文献   

3.
Molecular relaxation fluorescence methods were applied to analyze the nature and characteristic times of motions of amphiphilic molecules absorbed in the polar region of a phospholipid bilayer. The fluorescence probes 2-toluidinonaphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate in egg phosphatidylcholine vesicles were studied. The methods of edge excitation fluorescence red shifts, nanosecond time-resolved spectroscopy, fluorescence quenching by hydrophilic and hydrophobic quenchers and emission wavelength dependence of polarization were used. The structural (dipolar) relaxation is shown to be a very rapid (subnanosecond) process. The observed nanosecond phenomena are related to translational movement of the chromophore itself towards a more polar environment and its rotation. The polar surface area of the phospholipid membrane appears to be a highly mobile liquid-like system.  相似文献   

4.
Excited state interactions of N-(p-tolyl)-2-aminonaphthalene-6-sulfonate (2, 6 p-TNS) bound to apomyoglobin were studied by nanosecond time-resolved emission spectroscopy. A dynamic interaction of the excited dye molecule with its binding site, associated with a significant change in the emission energy with time, was observed. The decay kinetics were found to be complex and consistent with the kinetic model for solvent relaxation as proposed by Bakhshiev et al. (Opt. Spectrosc. 21:307. 1966). The behavior of 2, 6 p-TNS bound to apomyoglobin was found to be qualitatively similar to that of the dye dissolved in a viscous solvent such as glycerol or adsorbed to egg lecithin vesicles. The detailed information obtained by following the changes in emission spectra of fluorescent probes on the nanosecond time scale leads to a better understanding of their interactions with biological systems.  相似文献   

5.
R M Epand  B T Leon 《Biochemistry》1992,31(5):1550-1554
The fluorescence emission spectrum of N epsilon-dansyl-L-Lys undergoes a marked blue shift when incorporated from aqueous solution into phospholipid bilayers. This shift is greater for membranes composed of dipalmitoleoylphosphatidylcholine than for membranes of dipalmitoleoylphosphatidylethanolamine. With the latter but not the former lipid, the fluorescence emission from N epsilon-dansyl-L-Lys is markedly temperature-dependent. The marked temperature dependence of N epsilon-dansyl-L-Lys fluorescence in bilayers of dipalmitoleoylphosphatidylethanolamine is greatest as the sample is heated close to the bilayer to hexagonal phase transition temperature. The fluorescence emission properties of another probe of membrane surface hydrophobicity, Laurdan, also exhibit marked changes at temperatures just below the bilayer to hexagonal phase transition temperature. At these temperatures, the generalized polarization begins to increase rather than decrease with temperature, and the emission intensity decreases markedly. Such effects are not observed over the same temperature range with phosphatidylcholine. Thus, both dansyl-L-lysine and Laurdan provide probes to measure changes in the physical properties of membrane bilayers which occur when these bilayers are heated close to the temperature required for transition to the hexagonal phase.  相似文献   

6.
Time-resolved and steady-state spectra and kinetics of anisotropy of 1-phenylnaphthylamine (1-AN) fluorescent probe in phosphatidylcholine bilayer membranes have been examined using a nanosecond laser spectrofluorimeter. In this system we consider two kinds of inhomogeneous broadening of spectra, the first of which is due to different probe locations in membrane, while the second one is due to the statistical distribution of interaction energy within a given location. This broadening causes the red shift of the fluorescence spectrum at red-edge excitation, the specific dependences of instantaneous fluorescence and fluorescence anisotropy spectra on the wavelength of excitation. A field diagram is presented which, by describing the free energy levels of the polar fluorescent probe in membranes, makes it possible to unambiguously interpret the whole set of experimental data. It is suggested that the release of potential energy of intermolecular interactions which occurs in the process of relaxation, results in accelerated (light-induced) rotation of the probe inside the membrane.  相似文献   

7.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

8.
Steroidogenic acute regulatory protein (StAR) mediates cholesterol transport from the outer to the inner mitochondrial membrane during steroid biosynthesis. The mechanism of StAR's action is not established. To address mechanistic issues, we assessed the binding of StAR to artificial membranes by fluorescence resonance energy transfer using endogenous StAR tryptophan residues as the donor and dansyl-phosphatidylethanolamine in the bilayer as the acceptor. Mixing StAR with dansyl-labeled vesicles composed of phosphatidylcholine increased the fluorescence intensity of dansyl emission excited at 280 nm by 10-40%. This interaction was dependent on pH, with a maximum at pH 3.0-3.5 and essentially no change above pH 5. Binding experiments at different temperatures and various combinations of phosphatidylcholine, phosphatidylglycerol, cardiolipin, and cholesterol showed that binding involves an electrostatic step and one or more other steps. Although binding prefers a thermodynamically ordered bilayer, the rate-limiting step occurs either when the bilayer is in a fluid state or when there is cholesterol-induced membrane heterogeneity. Experiments with fluorescence and light scattering indicate that StAR binding promotes ordering and aggregation of anionic membranes. The inactive StAR mutant R182L had lower affinity for the membrane, and the partially active mutant L275P had intermediate affinity. Far-UV CD spectroscopy of StAR in PC membranes show more beta-structure than in aqueous buffers, and the presence of cardiolipin or cholesterol in the membrane fosters a molten globule state. Our data suggest that StAR binds to membranes in a partially unfolded molten globule state that is relevant to the activity of the protein.  相似文献   

9.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0 degrees C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospho lipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at -25 degrees C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

10.
The fluorescence properties of alpha-tocopherol in a range of solvents and in micelles and membrane vesicles have been measured. In solvents the fluorescence decay was fitted by a single exponential. In bilayer membranes of dipalmitoylphosphatidylcholine or egg phosphatidylcholine the fluorescence decay was more accurately fitted as a double exponential. This may indicate that alpha-tocopherol occupies two or more sites in such membranes. Depth-dependent quenching of alpha-tocopherol fluorescence by acrylamide and some doxyl stearates has also been studied. The results confirm that in gel-phase lipid the chromanol group has a transverse distribution close to the head-group region of the lipid. In fluid phase lipid in the presence of buffer the results indicate there is more penetration of the chromanol group into the bilayer.  相似文献   

11.
We have measured the fluorescence decay of N-phenyl-1-naphthylamine using the phase-modulation method, in several solvent systems and egg phosphatidylcholine vesicles. The decay is monoexponential in pure solvents (both polar and non-polar) of low viscosity. In polar viscous solvents or in non-polar solvents containing an added polar solute, the decay is heterogeneous and emission wavelength dependent. In such cases, dielectric relaxation and/or excited-state complexing give rise to a shift of the emission spectrum on the nanosecond time scale. Emission-wavelength-dependent decay was also observed when N-phenyl-1-naphthylamine was bound to egg phosphatidylcholine vesicles. From these results as well as the position of the emission spectral maximum, we conclude that N-phenyl-1-naphthylamine probes the ester-carbonyl region of the phospholipid acyl chains, where it undergoes an excited-state reaction. This result contradicts the often made assumption that N-phenyl-1-naphthylamine probes the deeper hydrocarbon region of the bilayer.  相似文献   

12.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0°C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospholipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at ?25°C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

13.
G J Brewer 《Biochemistry》1992,31(6):1809-1815
The increased electrical conductance previously observed between two model membranes containing gangliosides suggests the creation of a new environment in the adhesive junction [Brewer, G. J., & Thomas, P.D. (1984) Biochim. Biophys. Acta 776, 279]. In order to provide a mechanism for this novel finding, we now report an investigation of the micropolarity in the adhesive junction. Emission from the fluorescent probe PRODAN is a sensitive measure of polarity of the probe environment. A bimodal linear relationship correlates the emission wavelength from PRODAN with the inverse of solvent dielectric constant (1/epsilon). A better single linear relationship is obtained using Reichardt's relative polarity measure (RPM). Creation of two macroscopic spherical lipid bilayers from phosphatidylcholine, brain gangliosides, and PRODAN allowed selective excitation and observation of fluorescence from either a single bilayer or the double bilayer in the adhesive junction. The reported PRODAN polarity of -0.57 in a single ganglioside-containing membrane was midway between the polarity of water and n-hexane, suggesting PRODAN localization near the lipid carbonyls. The adhesive junctional region exhibited two new less polar environments of PRODAN fluorescence, RPM = -0.45 and -0.29. These measures are consistent with a relatively dehydrated immobilized phase. These changes were not observed in the adhesion zone between two membranes made with phosphatidylcholine without gangliosides. The changes in molecular structure in the junction that could be responsible for the altered PRODAN emission are discussed. A decrease in the hydrocarbon thickness of junctional membranes or a decrease in the aqueous junctional polarity could be responsible for the polarity decrease reported by PRODAN.  相似文献   

14.
A lipid transfer protein, purified from bovine brain (23.7 kDa, 208 amino acids) and specific for glycolipids, has been used to develop a fluorescence resonance energy transfer assay (anthrylvinyl-labeled lipids; energy donors and perylenoyl-labeled lipids; energy acceptors) for monitoring the transfer of lipids between membranes. Small unilamellar vesicles composed of 1 mol% anthrylvinyl-galactosylceramide, 1.5 mol% perylenoyl-triglyceride, and 97.5% 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) served as donor membranes. Acceptor membranes were 100% POPC vesicles. Addition of glycolipid transfer protein to mixtures of donor and acceptor vesicles resulted in increasing emission intensity of anthrylvinyl-galactosylceramide and decreasing emission intensity of the nontransferable perylenoyl-triglyceride as a function of time. The behavior was consistent with anthrylvinyl-galactosylceramide being transferred from donor to acceptor vesicles. The anthrylvinyl and perylenoyl energy transfer pair offers advantages over frequently used energy transfer pairs such as NBD and rhodamine. The anthrylvinyl emission overlaps effectively the perylenoyl excitation spectrum and the fluorescence parameters of the anthrylvinyl fluorophore are nearly independent of the medium polarity. The nonpolar fluorophores are localized in the hydrophobic region of the bilayer thus producing minimal disturbance of the bilayer polar region. Our results indicate that this method is suitable for assay of lipid transfer proteins including mechanistic studies of transfer protein function.  相似文献   

15.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

16.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

17.
E Pérochon  A Lopez  J F Tocanne 《Biochemistry》1992,31(33):7672-7682
Through steady-state and time-resolved fluorescence experiments, the polarity of the bilayers of egg phosphatidylcholine vesicles was studied by means of the solvatochromic 2-anthroyl fluorophore which we have recently introduced for investigating the environmental micropolarity of membranes and which was incorporated synthetically in phosphatidylcholine molecules (anthroyl-PC) in the form of 8-(2-anthroyl)octanoic acid. Fluorescence quenching experiments carried out with N,N-dimethylaniline and 12-doxylstearic acid as quenchers showed that the 2-anthroyl chromophore was located in depth in the hydrophobic region of the lipid bilayer corresponding to the C9-C16 segment of the acyl chains. Steady-state fluorescence spectroscopy revealed a nonstructured and red-shifted (lambda em(max) = 464 nm) spectrum for the probe in egg-PC bilayers, which greatly differed from the structured and blue (lambda em(max) = 404 nm) spectrum the fluorophore was shown to display in n-hexane. While the fluorescence decays of the fluorophore in organic solvents were monoexponential, three exponentials were required to account for the fluorescence decays of anthroyl-PC in egg-PC vesicles, with average characteristic times of 1.5 ns, 5.5 ns, and 20 ns. These lifetime values were independent of the emission wavelength used. Addition of cholesterol to the lipid did not alter these tau values. One just observed an increase in the fractional population of the 1.5-ns short-living species detrimental to the population of the 20-ns long-living ones. These observations enabled time-resolved fluorescence spectroscopy measurements to be achieved in the case of the 1/1 (mol/mol) egg-PC/cholesterol mixture. Three distinct decay associated spectra (DAS) were recorded, with maximum emission wavelengths, respectively, of 410 nm, 440 nm, and 477 nm for the 1.5-ns, 6-ns, and 20-ns lifetimes found in this system. On account of the properties and the polarity scale previously established for the 2-anthroyl chromophore in organic solvents, these data strongly suggest the occurrence of three distinct excited states for anthroyl-PC in egg-PC bilayers, corresponding to three environments for the 2-anthroyl chromophore, differing in polarity. The lifetime of 1.5 ns and the corresponding structured and blue (lambda em(max) = 410 nm) DAS account for a hydrophobic environment, with an apparent dielectric constant of 2, which is that expected for the hydrophobic core of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

19.
The rotational motion of amphiphilic flavins in dipalmitoyl phospholipid bilayers was investigated with fluorescence anisotropy decay measurements. At temperatures between 10 and 50°C the rotation proved to be anisotropic, which indicated composite motion of both the aliphatic side-chain and the isoalloxazine moiety of the octadecyllumiflavin derivatives. Above the phase transition temperature (crystalline→liquid-crystalline state) the depolarization is complete within the average flavin fluorescence lifetime, implicating unrestricted motion and resulting in a non-ordered microenvironment. In the gel or crystalline state the flavin motion can best be characterized as a limited rotation or librational motion. The fluorescence decay of the flavins is heterogeneous at temperatures between 10 and 50°C, which is explained by assuming nanosecond relaxation of the polar phosphatidyl head-groups around the excited flavin. The lack of a significant cholesterol effect suggests that the isoalloxazine is located at the interphase of the bilayer and not in the hydrocarbon region. The microstructure is fluid-like, not in agreement with a preferred static localization of the flavins in the bilayer.  相似文献   

20.
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号