首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinoids have been shown to modulate inflammation and the immune response in many cell types including macrophages, endothelial cells, and vascular smooth muscle cells. However, present knowledge of whether inflammatory mediators modulate vitamin A status in these cells is limited. To identify the role of inflammation on retinoid metabolism in vascular smooth muscle cells, the cells were exposed to a combination of proinflammatory cytokines: interleukin-1beta, interferon-gamma, and lipopolysaccharides. Without stimulation with proinflammatory cytokines, vascular smooth muscle cells expressed retinol dehydrogenases-2 and 5 mRNA detected by RT-PCR. Stimulation with the combination of cytokines induced a substantial increase of retinol dehydrogenase-5 mRNA. This was associated with increased production of ligands for retinoic acid receptors, when assayed in a retinoic acid receptor-dependent luciferase reporter system. Our results demonstrate that inflammatory mediators activate the retinoid metabolic pathway in vascular smooth muscle cells, which potentially may modulate the inflammatory response in the vascular wall.  相似文献   

2.
Accumulation of transglutaminase 2 (TG2) is often associated with mineral deposits in vasculature. Here, we demonstrate that purified TG2 stimulated a 3-fold increase in matrix mineralization and up-regulation of osteoblastic markers in cultured primary vascular smooth muscle cells (VSMCs). Extracellular TG2 interacts with the low density lipoprotein related-protein 5 receptor and activates beta-catenin signaling in VSMCs. These results suggest that TG2 may promote vascular calcification by activating the beta-catenin signaling pathway.  相似文献   

3.
In vitro PGI2 synthesis by aortic strips obtained from thoracic aorta of rabbits fed a high cholesterol diet was examined and compared with that of control rabbits fed a normal diet. In this report, the amounts of PGI2 produced were shown as 6-keto-PGF1 alpha per microgram of aortic tissue DNA instead of per mg wet weight. We also investigated PGI2 synthesis by cultured smooth muscle cells (SMC) obtained from atherosclerotic intima. Basal PGI2 production by aortic strips from atherosclerotic rabbit aorta was significantly augmented compared with that of controls. Arachidonic acid (AA)-induced PGI2 production by atherosclerotic aorta was also significantly higher than that of controls. PGI2 producing capacities of intimal and medial layers, separated from atherosclerotic aorta, were examined and the intimal layer was found to elicit a significantly greater PGI2 production than the medial layer. Furthermore, cultured intimal SMC obtained from atherosclerotic rabbit aorta produced a greater amount of PGI2 than medial SMC from normal rabbit aorta at various cultured conditions. These results suggest that the possibility of enhanced PGI2 production by atherosclerotic aorta may well be considered as a defence mechanism of the vessel wall against damaging stimuli.  相似文献   

4.
M2 receptor stimulation results in the gating of nonselective cation channels in several smooth muscle cell types. However the requirement for current activation includes a rise in cytosolic calcium mediated by M3 receptor induced calcium release. This complex signaling system confers substantial complexity on the interpretation of pharmacological experiments. M2 and M3 receptor stimulation has also been linked to the inhibition of potassium channels in smooth muscle. These signaling events are likely to play important roles in excitation/contraction coupling.  相似文献   

5.
Vascular cell interactions mediated through cell surface receptors play a critical role in the assembly and maintenance of blood vessels. These signaling interactions transmit important information that alters cell function through changes in protein dynamics and gene expression. Here, we identify syndecan-2 (SDC2) as a gene whose expression is induced in smooth muscle cells upon physical contact with endothelial cells. Syndecan-2 is a heparan sulfate proteoglycan that is known to be important for developmental processes, including angiogenesis. Our results show that endothelial cells induce mRNA expression of syndecan-2 in smooth muscle cells by activating Notch receptor signaling. Both NOTCH2 and NOTCH3 contribute to the increased expression of syndecan-2 and are themselves sufficient to promote its expression independent of endothelial cells. Syndecan family members serve as coreceptors for signaling molecules, and interestingly, our data show that syndecan-2 regulates Notch signaling and physically interacts with NOTCH3. Notch activity is attenuated in smooth muscle cells made deficient in syndecan-2, and this specifically prevents expression of the differentiation marker smooth muscle α-actin. These results show a novel mechanism in which Notch receptors control their own activity by inducing the expression of syndecan-2, which then acts to propagate Notch signaling by direct receptor interaction.  相似文献   

6.
Kiyan J  Kiyan R  Haller H  Dumler I 《The EMBO journal》2005,24(10):1787-1797
Urokinase (uPA)-induced signaling in human vascular smooth muscle cells (VSMC) elicits important cellular functional responses, such as cell migration and proliferation. However, how intracellular signaling is linked to glycolipid-anchored uPA receptor (uPAR) is unknown. We provide evidence that uPAR activation by uPA induces its association with platelet-derived growth factor receptor (PDGFR)-beta. The interaction results in PDGF-independent PDGFR-beta activation by phosphorylation of cytoplasmic tyrosine kinase domains and receptor dimerization. Association of the receptors as well as the tyrosine kinase activity of PDGFR-beta are decisive in mediating uPA-induced downstream signaling that regulates VSMC migration and proliferation. These findings provide a molecular basis for mechanisms VSMC use to induce uPAR- and PDGFR-directed signaling. The processes may be relevant to VSMC function and vascular remodeling.  相似文献   

7.
To evaluate the possible role of ghrelin in the development of atherosclerosis, its effects on tumor necrosis factor (TNF)-alpha-induced proliferation and apoptosis of vascular smooth muscle cells (VSMCs) were investigated. Rat VSMCs were pretreated with different concentrations of ghrelin and then with TNF-alpha. VSMC proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry method. Apoptosis was detected using propidium iodide and Annexin-V labeling method. Exogenous ghrelin (10-1000 ng/ml) significantly inhibited TNF-alpha-induced proliferation of VSMCs in a concentration-dependent manner. Treatment with 1000 ng/ml ghrelin was most effective at inhibiting VSMC proliferation rate and the expression of proliferating cell nuclear antigen. However, treatment with des-acyl ghrelin affected neither proliferation nor PCNA expression. In contrast, TNF-alpha-induced apoptosis of VSMCs was inhibited by both ghrelin and des-acyl ghrelin in concentration-dependent manners, with maximal inhibition observed for both compounds at 1000 ng/ml. Taken together, our results suggested that ghrelin inhibited both the proliferation and apoptosis of rat VSMCs. Furthermore, the former effect is probably mediated by the growth hormone secretagogue receptor type 1a receptor, while the latter effect may be mediated through other receptors.  相似文献   

8.
9.
Both insulin resistance and reactive oxygen species (ROS) have been reported to play essential pathophysiological roles in cardiovascular diseases, such as hypertension and atherosclerosis. However, the mechanistic link between ROS, such as H2O2 and insulin resistance in the vasculature, remains undetermined. Akt, a Ser/Thr kinase, mediates various biological responses induced by insulin. In this study, we examined the effects of H2O2 on Akt activation in the insulin-signaling pathway in vascular smooth muscle cells (VSMCs). In VSMCs, insulin stimulates Akt phosphorylation at Ser473. Pretreatment with H2O2 concentration- and time-dependently inhibited insulin-induced Akt phosphorylation with significant inhibition observed at 50 microM for 10 min. A ROS inducer, diamide, also inhibited insulin-induced Akt phosphorylation. In addition, H2O2 inhibited insulin receptor binding partially and inhibited insulin receptor autophosphorylation almost completely. However, pretreatment with a protein kinase C inhibitor, GF109203X (2 microM), for 30 min did not block the inhibitory effects of H2O2 on insulin-induced Akt phosphorylation, suggesting that protein kinase C is not involved in the inhibition by H2O2. We conclude that ROS inhibit a critical insulin signal transduction component required for Akt activation in VSMCs, suggesting potential cellular mechanisms of insulin resistance, which would require verification in vivo.  相似文献   

10.
Mutations in TIGR/MYOC (myocilin), a secretory protein of unknown function, have been recently linked to glaucoma. Most known mutations map to the C-terminus, an olfactomedin-like domain. We have previously shown that, in contrast to the wild-type, a truncated form of myocilin lacking the olfactomedin domain is not secreted. In this study, we present evidence that the mutant protein is not correctly processed in the endoplasmic reticulum (ER) and accumulates into insoluble aggregates. In addition, we show that the presence of increasing amounts of mutant protein induces a fraction of the soluble, native myocilin to move to the insoluble fraction. Given the importance of such protein aggregates in the etiology of several aging-related diseases, we propose that olfactomedin-defective mutants might contribute to the pathology of glaucoma through a mechanism involving intracellular accumulation of misfolded proteins.  相似文献   

11.
Effects of pertussis toxin on Ca2+ transients in rat arterial smooth muscle cells in primary culture were monitored, using quin 2-microfluorometry. In the presence or the absence of extracellular Ca2+, norepinephrine, histamine, caffeine and high extracellular K+ induced elevations in cytosolic Ca2+ concentration. Cytosolic Ca2+ elevations induced by norepinephrine and histamine were inhibited by pretreatment of the cells with pertussis toxin, time- and dose-dependently. However, elevations induced by caffeine and K+-depolarization were unaffected by the pretreatment with this toxin. Thus, it is suggested that GTP binding protein, a pertussis toxin substrate and involved in the receptor-mediated cytosolic Ca2+ transients, is not involved in transient elevations in cytosolic Ca2+ induced by caffeine and K+-depolarization in cultured vascular smooth muscle cells.  相似文献   

12.
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent manner and discovered new mechanisms whereby cGK activity regulates RGS2. We show that RGS2 regulates vasoconstrictor-stimulated Ca(2+) store release, capacitative Ca(2+) entry, and noncapacitative Ca(2+) entry and that RGS2 is required for cGMP-mediated inhibition of vasoconstrictor-elicited phospholipase Cbeta activation, Ca(2+) store release, and capacitative Ca(2+) entry. RGS2 is degraded in vascular smooth muscle cells via the proteasome. Inhibition of cGK activity blunts RGS2 degradation. However, inactivation of the cGKIalpha phosphorylation sites in RGS2 does not stabilize the protein, suggesting that cGK activity regulates RGS2 degradation by other mechanisms. cGK activation promotes association of RGS2 with the plasma membrane by a mechanism requiring its cGKIalpha phosphorylation sites. By regulating GAP activity, plasma membrane association, and degradation, cGKIalpha therefore may control a cycle of RGS2 activation and inactivation. By diminishing cGK activity, endothelial dysfunction may impair RGS2 activation, thereby blunting vascular relaxation and contributing to hypertension.  相似文献   

13.
Reactive oxygen species (ROS) mediate cell-signaling processes in response to various ligands and play important roles in the pathogenesis of cardiovascular diseases. The present study reports that interleukin-22 (IL-22) elicits signal transduction in vascular smooth muscle cells (SMCs) through a ROS-dependent mechanism. We find that pulmonary artery SMCs express IL-22 receptor alpha 1 and that IL-22 activates STAT3 through this receptor. IL-22-induced signaling is found to be mediated by NADPH oxidase, as indicated by the observations that the inhibition and siRNA knock-down of this enzyme inhibit IL-22 signaling. IL-22 triggers the oxidative modifications of proteins through protein carbonylation and protein glutathionylation. Mass spectrometry identified some proteins that are carbonylated in response to IL-22 stimulation, including α-enolase, heat shock cognate 71 kDa protein, mitochondrial 60 kDa heat shock protein, and cytoplasmic 2 actin and determined that α-tubulin is glutathionylated. Protein glutathionylation and STAT3 phosphorylation are enhanced by the siRNA knock-down of glutaredoxin, while IL-22-mediated STAT3 phosphorylation is suppressed by knocking down thioredoxin interacting protein, an inhibitor of thioredoxin. IL-22 is also found to promote the growth of SMCs via NADPH oxidase. In rats, pulmonary hypertension is found to be associated with increased smooth muscle IL-22 expression. These results show that IL-22 promotes the growth of pulmonary vascular SMCs via a signaling mechanism that involves NADPH oxidase-dependent oxidation.  相似文献   

14.
The pulmonary circulation constricts in response to acute hypoxia, which is reversible on reexposure to oxygen. On exposure to chronic hypoxia, in addition to vasoconstriction, the pulmonary vasculature undergoes remodeling, resulting in a sustained increase in pulmonary vascular resistance that is not immediately reversible. Hypoxic pulmonary vasoconstriction is physiological in the fetus, and there are many mechanisms by which the pulmonary vasculature relaxes at birth, principal among which is the acute increase in oxygen. Oxygen-induced signaling mechanisms, which result in pulmonary vascular relaxation at birth, and the mechanisms by which chronic hypoxia results in pulmonary vascular remodeling in the fetus and adult, are being investigated. Here, the roles of cGMP-dependent protein kinase in oxygen-mediated signaling in fetal pulmonary vascular smooth muscle and the effects of chronic hypoxia on ion channel activity and smooth muscle function such as contraction, growth, and gene expression were discussed.  相似文献   

15.
Prostacyclin plays an important cardioprotective role, which has been increasingly appreciated in recent years in light of adverse effects of COX-2 inhibitors in clinical trials. This cardioprotection is thought to be mediated, in part, by prostacyclin inhibition of platelet aggregation. Multiple lines of evidence suggest that prostacyclin additionally protects from cardiovascular disease by pleiotropic effects on vascular smooth muscle. Genetic deletion of the prostacyclin receptor in mice revealed an important role for prostacyclin in preventing the development of atherosclerosis, intimal hyperplasia, and restenosis. In vitro studies have shown these effects may be due to prostacyclin inhibition of vascular smooth muscle cell proliferation and migration. Prostacyclin has also been shown to promote vascular smooth muscle cell differentiation at the level of gene expression through the Gs/cAMP/PKA pathway. Recently identified single nucleotide polymorphisms in the prostacyclin receptor that compromise receptor function suggest that some genetic variations may predispose individuals to increased cardiovascular disease. Herein, we review the literature on the cardioprotective effects of prostacyclin on vascular smooth muscle, and the underlying molecular signaling mechanisms. Understanding the role of prostacyclin and other eicosanoid mediators in the vasculature may lead to improved therapeutic and preventative options for cardiovascular disease.  相似文献   

16.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

17.
Angiotensin II (AII) increases production of reactive oxygen species from NAD(P)H oxidase, a response that contributes to vascular hypertrophy. Here we show in cultured vascular smooth muscle cells that S-glutathiolation of the redox-sensitive Cys(118) on the small GTPase, Ras, plays a critical role in AII-induced hypertrophic signaling. AII simultaneously increased the Ras activity and the S-glutathiolation of Ras (GSS-Ras) detected by biotin-labeled GSH or mass spectrometry. Both the increase in activity and GSS-Ras was labile under reducing conditions, suggesting the essential nature of this thiol modification to Ras activation. Overexpression of catalase, a dominant-negative p47(phox), or glutaredoxin-1 decreased GSS-Ras, Ras activation, p38, and Akt phosphorylation and the induction of protein synthesis by AII. Furthermore, expression of a Cys(118) mutant Ras decreased AII-mediated p38 and Akt phosphorylation as well as protein synthesis. These results show that H(2)O(2) from NAD(P)H oxidase forms GSS-Ras on Cys(118) and increases its activity leading to p38 and Akt phosphorylation, which contributes to the induction of protein synthesis. This study suggests that GSS-Ras is a redox-sensitive signaling switch that participates in the cellular response to AII.  相似文献   

18.
Vascular smooth muscle cell proliferation and migration play an important role in the pathophysiology of several vascular diseases, including atherosclerosis. Prostaglandins that have been implicated in this process are synthesized by two isoforms of cyclooxygenase (COX), with the expression of the regulated COX-2 isoform increased in atherosclerotic plaques. Bradykinin (BK), a vasoactive peptide increased in inflammation, induces the formation of prostaglandins through specific receptor activation. We hypothesized that BK plays an important role in the regulation of COX-2, contributing to the increase in production of prostaglandins in vascular smooth muscle cells. Herein we examined the signaling pathways that participate in the BK regulation of COX-2 protein levels in primary cultured aortic vascular smooth muscle cells. We observed an increase in COX-2 protein levels induced by BK that was maximal at 24 h. This increase was blocked by a B2 kinin receptor antagonist but not a B1 receptor antagonist, suggesting that the B2 receptor is involved in this pathway. In addition, we conclude that the activation of mitogen-activated protein kinases p42/p44, protein kinase C, and nitric oxide synthase is necessary for the increase in COX-2 levels induced by BK because either of the specific inhibitors for these enzymes blocked the effect of BK. Using a similar approach, we further demonstrated that reactive oxygen species and cAMP were not mediators on this pathway. These results suggest that BK activates several intracellular pathways that act in combination to increase COX-2 protein levels. This study suggests a role for BK on the evolution of the atheromatous plaque by virtue of controlling the levels of COX-2.  相似文献   

19.
To understand the role of arachidonic acid (AA) in regulating vascular smooth muscle cell (VSMC) growth, its effects on phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E were studied. Arachidonic acid stimulated phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E in a time-dependent manner in VSMC. Arachidonic acid stimulation of phosphorylation of the above signaling molecules is specific, as these events were not affected by other unsaturated or saturated fatty acids. Metabolic conversion of AA via the LOX/MOX and/or COX pathways, to some extent, was required for its effects on the phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E. In addition, AA increased PI3K activity in a time-dependent manner in VSMC. LY294002, an inhibitor of PI3K, completely blocked AA-induced phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E, suggesting a role for PI3K in these effects. Consistent with its effects on translation initiation signaling events, AA induced global protein synthesis in VSMC and this response was dependent, to some extent, on its metabolism via the LOX/MOX and/or COX pathways, and mediated by the PI3K/Akt/mTOR pathway. Thus, the above observations provide the first biochemical evidence for the role of AA in the activation of translation initiation signaling in VSMC.  相似文献   

20.
To evaluate the effect of exogenous nitric oxide (NO) and endogenous NO on the production of prostacyclin (PGI(2)) by cultured human pulmonary artery smooth muscle cells (HPASMC) treated with lipopolysaccharide (LPS), interleukin-1(beta)(IL-1(beta)), tumor necrosis factor alpha (TNF(alpha)) or interferon gamma (IFN(gamma)), HPASMC were treated with LPS and cytokines together with or without sodium nitroprusside (SNP), NO donor, N(G)-monomethyl-L-arginine (L-NMMA), NO synthetase inhibitor, and methylene blue (MeB), an inhibitor of the soluble guanylate cyclase. After incubation for 24 h, the postculture media were collected for the assay of nitrite by chemiluminescence method and the assay of PGI(2)by radioimmunoassay. The incubation of HPASMC with various concentrations of LPS, IL-1(beta)or TNF(alpha)for 24 h caused a significant increase in nitrite release and PGI(2)production. However, IFN(gamma)slightly increased the release of nitrite and had little effect on PGI(2)production. Although the incubation of these cells for 24 h with SNP did not cause a significant increase in PGI(2)production, the incubation of HPASMC with SNP and 10 microg/ml LPS, or with SNP and 100 U/ml IL-1(beta)further increase PGI(2)production and this enhancement was closely related to the concentration of SNP. However, stimulatory effect of SNP on PGI(2)production was not found in TNF(alpha)- and IFN(gamma)- treated HPASMC. Addition of L-NMMA to a medium containing LPS or IL-1(beta)reduced nitrite release and attenuated the stimulatory effect of those agents on PGI(2)production. MeB significantly suppressed the production of PGI(2)by HPASMC treated with or without LPS or IL-1(beta). The addition of SNP partly reversed the inhibitory effect of MeB on PGI(2)production by HPASMC. These experimental results suggest that NO might stimulate PGI(2)production by HPASMC. Exogenous NO together with endogenous NO induced by LPS or cytokines from smooth muscle cells might synergetically enhance PGI(2)production by these cells, possibly in clinical disorders such as sepsis and acute respiratory distress syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号