首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformationally constrained analogue synthesis was undertaken to aid in pharmacophore mapping and 3D-QSAR analysis of nitrobenzylmercaptopurine riboside (NBMPR) congeners as equilibriative nucleoside transporter 1 (ENT1) inhibitors. In our previous study [J. Med. Chem. 2003, 46, 831-837], novel regioisomeric nitro-1,2,3,4-tetrahydroisoquinoline conformationally constrained analogues of NBMPR were synthesized and evaluated as ENT1 ligands. 7-NO(2)-1,2,3,4-Tetrahydroisoquino-2-yl purine riboside was identified as the analogue with the nitro group in the best orientation at the NBMPR binding site of ENT1. In the present study, further conformational constraining was introduced by synthesizing 5'-O,8-cyclo derivatives. The flow cytometrically determined binding affinities indicated that the additional 5'-O,8-cyclo constraining was unfavorable for binding to the ENT1 transporter. The structure-activity relationship (SAR) acquired was applied to pharmacophore mapping using the PHASE program. The best pharmacophore hypothesis obtained embodied an anti-conformation with three hydrogen-bond acceptors, one hydrophobic center, and two aromatic rings involving the 3'-OH, 4'-oxygen, the NO(2) group, the benzyl phenyl and the imidazole and pyrimidine portions of the purine ring, respectively. A PHASE 3D-QSAR model derived with this pharmacophore yielded an r(2) of 0.916 for four (4) PLS components, and an excellent external test set predictive r(2) of 0.78 for 39 compounds. This pharmacophore was used for molecular alignment in a comparative molecular field analysis (CoMFA) 3D-QSAR study that also afforded a predictive model with external test set validation predictive r(2) of 0.73. Thus, although limited, this study suggests that the bioactive conformation for NBMPR at the ENT1 transporter could be anti. The study has also suggested an ENT1 inhibitory pharmacophore, and established a predictive CoMFA 3D-QSAR model that might be useful for novel ENT1 inhibitor discovery and optimization.  相似文献   

2.
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy.  相似文献   

3.
Gerhard Klebe 《Proteins》2012,80(2):626-648
Small molecules are recognized in protein‐binding pockets through surface‐exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein–ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise tounexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein–cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein‐binding pockets, and the local folding patterns next to the cofactor‐binding site. State‐of‐the‐art clustering techniques have been applied to group the different protein–cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD+ utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5′,3′-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5′-AMP, 3′-AMP, and 2′-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5′-nucleotides and 3′-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5′ substrates in an anti conformation and 3′ substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.  相似文献   

5.
Conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13-isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme [the structure of ADA complex with 1-deazaadenosine (1ADD) was used] within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1ADD known from X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

6.
Docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were conducted on a series of indole amide analogues as potent histone deacetylase inhibitors. The studies include comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Selected ligands were docked into the active site of human HDAC1. Based on the docking results, a novel binding mode of indole amide analogues in the human HDAC1 catalytic core is presented, and enzyme/inhibitor interactions are discussed. The indole amide group is located in the open pocket, and anchored to the protein through a pair of hydrogen bonds with Asp99 O-atom and amide NH group on ligand. Based on the binding mode, predictive 3D-QSAR models were established, which had conventional r2 and cross-validated coefficient values (r(cv)2) up to 0.982 and 0.601 for CoMFA and 0.954 and 0.598 for CoMSIA, respectively. A comparison of the 3D-QSAR field contributions with the structural features of the binding site showed good correlation between the two analyses. The results of 3D-QSAR and docking studies validate each other and provided insight into the structural requirements for activity of this class of molecules as HDAC inhibitors. The CoMFA and CoMSIA PLS contour maps and MOLCAD-generated active site electrostatic, lipophilicity, and hydrogen-bonding potential surface maps, as well as the docking studies, provided good insights into inhibitor-HDAC interactions at the molecular level. Based on these results, novel molecules with improved activity can be designed.  相似文献   

7.
Structure‐based drug design tries to mutually map pharmacological space populated by putative target proteins onto chemical space comprising possible small molecule drug candidates. Both spaces are connected where proteins and ligands recognize each other: in the binding pockets. Therefore, it is highly relevant to study the properties of the space composed by all possible binding cavities. In the present contribution, a global mapping of protein cavity space is presented by extracting consensus cavities from individual members of protein families and clustering them in terms of their shape and exposed physicochemical properties. Discovered similarities indicate common binding epitopes in binding pockets independent of any possibly given similarity in sequence and fold space. Unexpected links between remote targets indicate possible cross‐reactivity of ligands and suggest putative side effects. The global clustering of cavity space is compared to a similar clustering of sequence and fold space and compared to chemical ligand space spanned by the chemical properties of small molecules found in binding pockets of crystalline complexes. The overall similarity architecture of sequence, fold, and cavity space differs significantly. Similarities in cavity space can be mapped best to similarities in ligand binding space indicating possible cross‐reactivities. Most cross‐reactivities affect co‐factor and other endogenous ligand binding sites. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
A 3D-QSAR/CoMFA was performed for a series of 42 piperidine-based dopamine transporter (DAT) blockers. The overall process consisted of three major steps: (1) a pharmacophore model was built using the Genetic Algorithm Similarity Program (GASP); (2) the Flexible Superposition (FlexS) technique was applied to generate multiple conformations for each of the ligands based on the pharmacophore; (3) the Genetic Algorithm was employed to optimize the selection of the ligand conformations for the CoMFA modeling. The CoMFA models were found to be more detailed in the putative binding site by exploring multiple conformations of each ligand. The comparison of the contour maps shows that, in general, these models are comparable and the differences between them result from the ability of the flexible 3-substituents of the ligands to adopt multiple conformations satisfying the same pharmacophore model. These findings provide guidance for the design and improvement of compounds with DAT activity, which is important for the development of a treatment of cocaine addiction and certain neurological disorders.  相似文献   

9.
10.
We have determined the binding affinity for binding of the four purine nucleoside triphosphates GTP, ITP, XTP, and ATP to E-site nucleotide- and nucleoside diphosphate kinase-depleted tubulin. The relative binding affinities are 3000 for GTP, 10 for ITP, 2 for XTP, and 1 for ATP. Thus, the 2-exocyclic amino group in GTP is important in determining the nucleotide specificity of tubulin and may interact with a hydrogen bond acceptor group in the protein. The 6-oxo group also makes a contribution to the high affinity for GTP. NMR ROESY experiments indicate that the four nucleotides have different average conformations in solution. ATP and XTP are characterized by a high anti conformation, ITP by a medium anti conformation, and GTP by a low anti conformation. Possibly, the preferred solution conformation contributes to the differences in affinities. When the tubulin E-site is saturated with nucleotide, there appears to be little difference in the ability of the four nucleotides to stimulate assembly. The critical protein concentration is essentially identical in reactions using the four nucleotides. All four of the nucleotides were hydrolyzed during the assembly reaction, and the NDPs were incorporated into the microtubule. We also examined the binding of two gamma-phosphoryl-modified GTP photoaffinity analogues, p(3)-1, 4-azidoanilido-GTP and p(3)-1,3-acetylanilido-GTP. These analogues are inhibitors of the assembly reaction and bind to tubulin with affinities that are 15- and 50-fold lower, respectively, than the affinty for GTP. The affinity of GTP is less sensitive to substitutions at the gamma-phosphoryl position that to changes in the purine ring.  相似文献   

11.
The conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13 isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme (the 1ADD structure was used) within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of the ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1-deazaadenosine (1ADD) known from the X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of the bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

12.
Active site model of cytochrome P-450 LM2   总被引:1,自引:0,他引:1  
Based on (i) a detailed analysis of the physicochemical properties of selected benzphetamine derived substrates and (ii) the identification of Tyr-380 as active site residue trans to thiolate theoretical studies (computer aided molecular design) revealed a model of the substrate binding site of cytochrome P-450 LM2. The results indicate that substrates with a butterfly-like bulky conformation exhibit the highest intrinsic activity. Those substrates which preferably exist in an extended conformation are sterically hindered to intensively interact with the binding site which is demonstrated by computer graphics.  相似文献   

13.
14.
Fluorescence titration measurements have been used to examine the binding interaction of a number of analogues of the bis -benzimidazole DNA minor groove binding agent Hoechst 33258 with the decamer duplex d(GCAAATTTGC)2. The method of continuous variation in ligand concentration (Job plot analysis) reveals a 1:1 binding stoichiometry for all four analogues; binding constants are independent of drug concentration (in the range [ligand] = 0.1-5 microM). The four analogues studied were chosen in order to gain some insight into the relative importance of a number of key structural features for minor groove recognition, namely (i) steric bulk of the N -methylpiperazine ring, (ii) ligand hydrophobicity, (iii) isohelicity with the DNA minor groove and (iv) net ligand charge. This was achieved, first, by replacing the bulky, non-planar N -methylpiperazine ring with a less bulky planar charged imidazole ring permitting binding to a narrower groove, secondly, by linking the N -methylpiperazine ring to the phenyl end of the molecule to give the molecule a more linear, less isohelical conformation and, finally, by introducing a charged imidazole ring in place of the phenolic OH making it dicationic, enabling the contribution of the additional electrostatic interaction and extended conformation to be assessed. Delta G values were measured at 20 degrees C in the range -47.6 to -37.5 kJ mol-1 and at a number of pH values between 5.0 and 7.2. We find a very poor correlation between Delta G values determined by fluorescence titration and effects of ligand binding on DNA melting temperatures, concluding that isothermal titration methods provide the most reliable method of determining binding affinities. Our results indicate that the bulky N -methylpiperazine ring imparts a large favourable binding interaction, despite its apparent requirement for a wider minor groove, which others have suggested arises in a large part from the hydrophobic effect. The binding constant appears to be insensitive to the isohelical arrangement of the constituent rings which in these analogues gives the same register of hydrogen bonding interactions with the floor of the groove.  相似文献   

15.
A bifunctional biotinylated photoaffinity label for the nitrobenzylmercaptopurine riboside (NBMPR)-sensitive (es) nucleoside transporter (ENT1) has been synthesized and evaluated. This new probe,5'-S-aminoethyladenosine-N(6)-azidobenzyl-5'-thioadenosine biotin conjugate (SAEATA-14-biotin), exhibited high-affinity binding to the es transporter in K562 cells as determined by flow cytometry, with a K(i) of 2.69 nM in competition against 5-(SAENTA)-x8-fluorescein. It also exhibited covalent linking to the es transporter in BeWo cell membranes upon UV irradiation. This new bifunctional probe is a potential tool for determining the amino acid residues involved in ligand binding at the NBMPR-binding site of the ENT1 nucleoside transporter, as well as for the purification of the transporter.  相似文献   

16.
17.
Pérez A  Ojeda P  Ojeda L  Salas M  Rivas CI  Vera JC  Reyes AM 《Biochemistry》2011,50(41):8834-8845
The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.  相似文献   

18.
Direct fluorescence titration experiments of wheat germ protein synthesis initiation factor eIF-3 with mRNA cap and oligoribonucleotide analogues were performed in order to determine the equilibrium association constants (Keq) for the eIF-3.mRNA interaction as a function of pH and temperature. These data suggest that (i) the eIF-3.mRNA interaction is not cap-specific (i.e., m7G-specific), (ii) ATP hydrolysis is not involved in the interaction, and (iii) the interaction is primarily ionic in nature. Competition experiments between a rabbit alpha-globin mRNA oligoribonucleotide analogue and either mRNA cap analogues or nucleoside triphosphates (NTPs) are also reported; these experiments indicate that NTPs act as both activators and competitive inhibitors of the mRNA.eIF-3 association. The results are consistent with a partially uncompetitive binding mechanism, whereby at low NTP concentrations (less than or equal to 10 microM) the bound NTP enhances subsequent mRNA binding to eIF-3, perhaps by inducing a conformational change, and at higher NTP concentrations, the NTP acts as a competitive inhibitor for the mRNA binding site on eIF-3.  相似文献   

19.
20.
Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (i) a high-affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (ii) a separate high-affinity transporter for adenine, (iii) a low-affinity adenosine transporter, and (iv) a low-affinity/high-capacity adenine carrier. Hypoxanthine was taken up with 12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted PfNT1 (P. falciparum nucleoside transporter 1) gene we found that the high-affinity hypoxanthine/nucleoside transport activity was completely abolished, whereas the low-affinity adenosine transport activity was unchanged. Adenine transport was increased, presumably to partly compensate for the loss of the high-affinity hypoxanthine transporter. We thus propose a model for purine salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号