首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat hearts were perfused with mixtures of [3-(13)C]pyruvate and [3-(13)C]lactate (to alter cytosolic redox) at low (0.5 mM) or high (2.5 mM) Ca(2+) concentrations to alter contractility. Hearts were frozen at various times after exposure to these substrates, were extracted, and were then analyzed by (13)C NMR spectroscopy. The time-dependent multiplets observed in the (13)C NMR resonances of glutamate in all hearts and in malate and aspartate in hearts perfused with high-pyruvate/low-lactate concentrations were analyzed using a kinetic model of the tricarboxylic acid (TCA) cycle. The analysis showed that TCA cycle flux (V(TCA)) and exchange flux (V(X)) that involved cycle intermediates were both sensitive to cell redox and altered Ca(2+) concentration, and the ratio of these fluxes (V(X)/V(TCA)) varied >10-fold.  相似文献   

2.
Control of oxidative metabolism was studied using 13C NMR spectroscopy to detect rate-limiting steps in 13C labeling of glutamate. 13C NMR spectra were acquired every 1 or 2 min from isolated rabbit hearts perfused with either 2.5 mM [2-13C]acetate or 2.5 mM [2-13C]butyrate with or without KCl arrest. Tricarboxylic acid cycle flux (VTCA) and the exchange rate between alpha-ketoglutarate and glutamate (F1) were determined by least-square fitting of a kinetic model to NMR data. Rates were compared to measured kinetics of the cardiac glutamate-oxaloacetate transaminase (GOT). Despite similar oxygen use, hearts oxidizing butyrate instead of acetate showed delayed incorporation of 13C label into glutamate and lower VTCA, because of the influence of beta-oxidation: butyrate = 7.1 +/- 0.2 mumol/min/g dry wt; acetate = 10.1 +/- 0.2; butyrate + KCl = 1.8 +/- 0.1; acetate + KCl = 3.1 +/- 0.1 (mean +/- SD). F1 ranged from a low of 4.4 +/- 1.0 mumol/min/g (butyrate + KCl) to 9.3 +/- 0.6 (acetate), at least 20-fold slower than GOT flux, and proved to be rate limiting for isotope turnover in the glutamate pool. Therefore, dynamic 13C NMR observations were sensitive not only to TCA cycle flux but also to the interconversion between TCA cycle intermediates and glutamate.  相似文献   

3.
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.  相似文献   

4.
This study was designed to test the hypothesis that indirect (1)H[(13)C] detection of tricarboxylic acid (TCA) cycle intermediates using heteronuclear multiple quantum correlation-total correlation spectroscopy (HMQC-TOCSY) nuclear magnetic resonance (NMR) spectroscopy provides additional (13)C isotopomer information that better describes the kinetic exchanges that occur between intracellular compartments than direct (13)C NMR detection. NMR data were collected on extracts of rat hearts perfused at various times with combinations of [2-(13)C]acetate, propionate, the transaminase inhibitor aminooxyacetate, and (13)C multiplet areas derived from spectra of tissue glutamate were fit to a standard kinetic model of the TCA cycle. Although the two NMR methods detect different populations of (13)C isotopomers, similar values were found for TCA cycle and exchange fluxes by analyzing the two data sets. Perfusion of hearts with unlabeled propionate in addition to [2-(13)C]acetate resulted in an increase in the pool size of all four-carbon TCA cycle intermediates. This allowed the addition of isotopomer data from aspartate and malate in addition to the more abundant glutamate. This study illustrates that metabolic inhibitors can provide new insights into metabolic transport processes in intact tissues.  相似文献   

5.
Inhibition of succinate dehydrogenase (SDH) by the mitochondrial toxin 3-nitropropionic acid (3-NP) has gained acceptance as an animal model of Huntington's disease. In this study 13C NMR spectroscopy was used to measure the tricarboxylic acid (TCA) cycle rate in the rat brain after 3-NP treatment. The time course of both glutamate C4 and C3 13C labelling was monitored in vivo during an infusion of [1-13C]glucose. Data were fitted by a mathematical model to yield the TCA cycle rate (Vtca) and the exchange rate between alpha-ketoglutarate and glutamate (Vx). 3-NP treatment induced a 18% decrease in Vtca from 0.71 +/- 0.02 micro mol/g/min in the control group to 0.58 +/- 0.02 micro mol/g/min in the 3-NP group (p < 0.001). Vx increased from 0.88 +/- 0.08 micro mol/g/min in the control group to 1.33 +/- 0.24 micro mol/g/min in the 3-NP group (p < 0.07). Fitting the C4 glutamate time course alone under the assumption that Vx is much higher than Vtca yielded Vtca=0.43 micro mol/g/min in both groups. These results suggest that both Vtca and Vx are altered during 3-NP treatment, and that both glutamate C4 and C3 labelling time courses are necessary to obtain a reliable measurement of Vtca.  相似文献   

6.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

7.
Hepatic glucose synthesis from glycogen, glycerol, and the tricarboxylic acid (TCA) cycle was measured in five overnight-fasted subjects by (1)H, (2)H, and (13)C NMR analysis of blood glucose, urinary acetaminophen glucuronide, and urinary phenylacetylglutamine after administration of [1,6-(13)C(2)]glucose, (2)H(2)O, and [U-(13)C(3)]propionate. This combination of tracers allows three separate elements of hepatic glucose production (GP) to be probed simultaneously in a single study: 1) endogenous GP, 2) the contribution of glycogen, phosphoenolpyruvate (PEP), and glycerol to GP, and 3) flux through PEP carboxykinase, pyruvate recycling, and the TCA cycle. Isotope-dilution measurements of [1,6-(13)C(2)] glucose by (1)H and (13)C NMR indicated that GP in 16-h-fasted humans was 10.7 +/- 0.9 micromol.kg(-1).min(-1). (2)H NMR spectra of monoacetone glucose (derived from plasma glucose) provided the relative (2)H enrichment at glucose H-2, H-5, and H-6S, which, in turn, reflects the contribution of glycogen, PEP, and glycerol to total GP (5.5 +/- 0.7, 4.8 +/- 1.0, and 0.4 +/- 0.3 micromol.kg(-1).min(-1), respectively). Interestingly, (13)C NMR isotopomer analysis of phenylacetylglutamine and acetaminophen glucuronide reported different values for PEP carboxykinase flux (68.8 +/- 9.8 vs. 37.5 +/- 7.9 micromol.kg(-1).min(-1)), PEP recycling flux (59.1 +/- 9.8 vs. 27.8 +/- 6.8 micromol.kg(-1).min(-1)), and TCA cycle flux (10.9 +/- 1.4 vs. 5.4 +/- 1.4 micromol.kg(-1).min(-1)). These differences may reflect zonation of propionate metabolism in the liver.  相似文献   

8.
To clarify the role of uncoupling protein-3 (UCP3) in skeletal muscle, we used NMR and isotopic labeling experiments to evaluate the effect of UCP3 knockout (UCP3KO) in mice on the regulation of energy metabolism in vivo. Whole body energy expenditure was determined from the turnover of doubly labeled body water. Coupling of mitochondrial oxidative phosphorylation in skeletal muscle was evaluated from measurements of rates of ATP synthesis (using (31)P NMR magnetization transfer experiments) and tricarboxylic acid (TCA) cycle flux (calculated from the time course of (13)C enrichment in C-4 and C-2 of glutamate during an infusion of [2-(13)C]acetate). At the whole body level, we observed no change in energy expenditure. However, at the cellular level, skeletal muscle UCP3KO increased the rate of ATP synthesis from P(i) more than 4-fold under fasting conditions (wild type, 2.2 +/- 0.6 versus knockout, 9.1 +/- 1.4 micromol/g of muscle/min, p < 0.001) with no change in TCA cycle flux rate (wild type, 0.74 +/- 0.04 versus knockout, 0.71 +/- 0.03 micromol/g of muscle/min). The increased efficiency of ATP production may account for the significant (p < 0.05) increase in the ratio of ATP to ADP in the muscle of UCP3KO mice (5.9 +/- 0.3) compared with controls (4.5 +/- 0.4). The data presented here provide the first evidence of uncoupling activity by UCP3 in skeletal muscle in vivo.  相似文献   

9.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

10.
(13)C NMR monitored the dynamics of exchange from specific hydrogens of hepatic [2-(13)C]glutamate and [3-(13)C]aspartate with deuterons from intracellular heavy water providing information on alpha-ketoglutarate/glutamate exchange and subcellular compartmentation. Mouse livers were perfused with [3-(13)C]alanine in buffer containing or not 50% (2)H(2)O for increasing periods of time (1 min < t < 30 min). Liver extracts prepared at the end of the perfusions were analyzed by high resolution (13)C NMR (150.13 MHz) with (1)H decoupling only and with simultaneous (1)H and (2)H decoupling. (13)C-(2)H couplings and (2)H-induced isotopic shifts observed in the glutamate C2 resonance, allowed to estimate the apparent rate constants (forward, reverse; min(-1)) for (i) the reversible exchange of [2-(13)C]glutamate H2 as catalyzed mainly by aspartate aminotransferase (0.32, 0.56), (ii) the reversible exchange of [2-(13)C]glutamate H3(proS) as catalyzed by NAD(P) isocitrate dehydrogenase (0.1, 0.05), and (iii) the irreversible exchanges of glutamate H3(proR) and H3(proS) as catalyzed by the sequential activities of mitochondrial aconitase and NAD isocitrate dehydrogenase of the tricarboxylic acid cycle (0.035), respectively. A similar approach allowed to determine the rates of (1)H-(2)H exchange for the H2 (0.4, 0.5) or H3(proR) (0.3, 0.2) or the H2 and H3(proS) hydrogens (0.20, 0.23) of [3-(13)C]aspartate isotopomers. The ubiquitous subcellular localization of (1)H-(2)H exchange enzymes and the exclusive mitochondrial localization of pyruvate carboxylase and the tricarboxylic acid cycle resulted in distinctive kinetics of deuteration in the H2 and either or both H3 hydrogens of [2-(13)C]glutamate and [3-(13)C]aspartate, allowing to follow glutamate and aspartate trafficking through cytosol and mitochondria.  相似文献   

11.
A method was developed for obtaining high signal-to-noise 13C NMR spectra of intracellular compounds in metabolically active cultured cells. The method allows TCA cycle labeling kinetics to be determined in real time without significant oxygen transport limitations. Cells were immobilized on the surface of nonporous microcarriers that were either uncoated or coated with polypeptides and used in a 12-cm3 packed bed. The methods were tested with two EMT6 mouse mammary tumor cell lines, one strongly adherent and the other moderately adherent, and a weakly adherent mouse insulinoma line (betaHC9). For both EMT6 lines, NTP and oxygen consumption measurements indicated that the number of cells in the spectrometer ranged from 6 x 10(8) to 1 x 10(9). During infusion of [1-13C]glucose, labeling in C-4 glutamate (indicative of flux into the first half of the TCA cycle) could be detected with 15-min resolution. However, labeling for C-3 and C-2 glutamate (indicative of complete TCA cycle activity) was fivefold lower and difficult to quantify. To increase TCA cycle labeling, cells were infused with medium containing [1,6-13C2]glucose. A 2.5-fold increase was observed in C-4 glutamate labeling and C-3 and C-2 glutamate labeling could be monitored with 30-min resolution. Citrate synthase activity was indirectly detected in real time, as [3,4-13C2]glutamate was formed from [2-13C]oxaloacetate and [2-13C]acetate (of acetyl-CoA). Cell mass levels observed with betaHC9 cells were somewhat lower. However, the 13C S/N was sufficient to allow real-time monitoring of the response of intracellular metabolite labeling to a step change in glucose and a combined glutamine/serum pulse.  相似文献   

12.
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-13C]glutamine or [3-13C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and 13C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-13C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.  相似文献   

13.
The compartmentation of amino acid metabolism is an active and important area of brain research. 13C labeling and 13C nuclear magnetic resonance (NMR) are powerful tools for studying metabolic pathways, because information about the metabolic histories of metabolites can be determined from the appearance and position of the label in products. We have used 13C labeling and 13C NMR in order to investigate the metabolic history of gamma-aminobutyric acid (GABA) and glutamate in rat brain. [1-13C]Glucose was infused into anesthetized rats and the 13C labeling patterns in GABA and glutamate examined in brain tissue extracts obtained at various times after infusion of the label. Five minutes after infusion, most of the 13C label in glutamate appeared at the C4 position; at later times, label was also present at C2 and C3. This 13C labeling pattern occurs when [1-13C]glucose is metabolized to pyruvate by glycolysis and enters the pool of tricarboxylic acid (TCA) intermediates via pyruvate dehydrogenase. The label exchanges into glutamate from the TCA cycle pool through glutamate transaminases or dehydrogenase. After 30 min of infusion, approximately 10% of the total 13C in brain extracts appeared in GABA, primarily (greater than 80%) at the amino carbon (C4), indicating that the GABA detected is labeled through pyruvate carboxylase. The different labeling patterns observed for glutamate and GABA show that the large detectable glutamate pool does not serve as the precursor to GABA. Our NMR data support previous experiments suggesting compartmentation of metabolism in brain, and further demonstrate that GABA is formed from a pool of TCA cycle intermediates derived from an anaplerotic pathway involving pyruvate carboxylase.  相似文献   

14.
The metabolic mechanism of hepatic glucose overproduction was investigated in 3,3'-5-triiodo-l-thyronine (T3)-treated rats and Zucker diabetic fatty (ZDF) rats (fa/fa) after a 24-h fast. 2H2O and [U-13C3]propionate were administered intraperitoneally, and [3,4-13C2]glucose was administered as a primed infusion for 90 min under ketamine-xylazine anesthesia. 13C NMR analysis of monoacetone glucose derived from plasma glucose indicated that hepatic glucose production was twofold higher in both T3-treated rats and ZDF rats compared with controls, yet the sources of glucose overproduction differed significantly in the two models by 2H NMR analysis. In T3-treated rats, the hepatic glycogen content and hence the contribution of glycogenolysis to glucose production was essentially zero; in this case, excess glucose production was due to a dramatic increase in gluconeogenesis from TCA cycle intermediates. 13C NMR analysis also revealed increased phosphoenolpyruvate carboxykinase flux (4x), increased pyruvate cycling flux (4x), and increased TCA flux (5x) in T3-treated animals. ZDF rats had substantial glycogen stores after a 24-h fast, and consequently nearly 50% of plasma glucose originated from glycogenolysis; other fluxes related to the TCA cycle were not different from controls. The differing mechanisms of excess glucose production in these models were easily distinguished by integrated 2H and 13C NMR analysis of plasma glucose.  相似文献   

15.
Using a specific 13C NMR localization method, 13C label incorporation into the glycogen C1 resonance was measured while infusing [1-(13)C]glucose in intact rats. The maximal concentration of [1-(13)C]glycogen was 5.1 +/- 0.6 micromol g(-1) (mean +/- SE, n = 8). During the first 60 min of acute hyperglycemia, the rate of 13C label incorporation (synthase flux) was 2.3 +/- 0.7 micromol g(-1) h(-1) (mean +/- SE, n = 9 rats), which was higher (p < 0.01) than the rate of 0.49 +/- 0.14 micromol g(-1) h(-1) measured > or = 2 h later. To assess whether the incorporation of 13C label was due to turnover or net synthesis, the infusion was continued in seven rats with unlabeled glucose. The rate of 13C label decline (phosphorylase flux) was lower (0.33 +/- 0.10 micromol g(-1) h(-1)) than the initial rate of label incorporation (p < 0.01) and appeared to be independent of the duration of the preceding infusion of [1-(13)C]glucose (p > 0.05 for correlation). The results implied that net glycogen synthesis of approximately 3 micromol g(-1) had occurred, similar to previous reports. When infusing unlabeled glucose before [1-(13)C]glucose in three studies, the rate of glycogen C1 accumulation was 0.46 +/- 0.08 micromol g(-1) h(-1). The results suggest that steady-state glycogen turnover rates during hyperglycemia are approximately 1% of glucose consumption.  相似文献   

16.
Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (P<0.05); VO2peak was not different between the T and UT thighs with glutamate infusion. Peak exercise under control conditions revealed a greater glutamate uptake in the T thigh compared with rest (7.3+/-3.7 vs. 1.0+/-0.1 micromol.min(-1).kg wet wt(-1), P<0.05) without increase in TCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), P<0.05) and malate (2.2+/-0.4 vs. 0.5+/-0.03 mmol/kg dw, P<0.05) and a decrease in 2-oxoglutarate (12.2+/-1.6 vs. 32.4+/-6.8 micromol/kg dw, P<0.05). Overall, glutamate infusion increased arterial glutamate (P<0.05) and maintained this increase. Glutamate infusion coincided with elevated fumarate and malate (P<0.05) and decreased 2-oxoglutarate (P<0.05) at peak exercise relative to rest in the T thigh; there were no further changes in the UT thigh. Although glutamate may have a role in the expansion of the TCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.  相似文献   

17.
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo 13C NMR spectroscopy coupled with the infusion labeled glial‐specific substrate, such as acetate. In this study, we infused alpha‐chloralose anesthetized rats with [2‐13C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using 1H‐[13C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two‐compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vxg and Vxn) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations.

  相似文献   


18.
Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.   总被引:1,自引:0,他引:1  
The utilization of pyruvate and acetate by Saccharomyces cerevisiae was examined using 13C and 1H NMR methodology in intact wild-type yeast cells and mutant yeast cells lacking Krebs tricarboxylic acid (TCA) cycle enzymes. These mutant cells lacked either mitochondrial (NAD) isocitrate dehydrogenase (NAD-ICDH1),alpha-ketoglutarate dehydrogenase complex (alpha KGDC), or mitochondrial malate dehydrogenase (MDH1). These mutant strains have the common phenotype of being unable to grow on acetate. [3-13C]-Pyruvate was utilized efficiently by wild-type yeast with the major intermediates being [13C]glutamate, [13C]acetate, and [13C]alanine. Deletion of any one of these Krebs TCA cycle enzymes changed the metabolic pattern such that the major synthetic product was [13C]galactose instead of [13C]glutamate, with some formation of [13C]acetate and [13C]alanine. The fact that glutamate formation did not occur readily in these mutants despite the metabolic capacity to synthesize glutamate from pyruvate is difficult to explain. We discuss the possibility that these data support the metabolon hypothesis of Krebs TCA cycle enzyme organization.  相似文献   

19.
The effects of hypoxia on the metabolism of the central nervous system were investigated in rats submitted to a low oxygen atmosphere (8% O(2); 92% N(2)). [1-(13)C]glucose and [2-(13)C]acetate were used as substrates, this latter being preferentially metabolized by glial cells. After 1-h substrate infusion, the incorporation of 13C in brain metabolites was determined by NMR spectroscopy. Under hypoxia, an important hyperglycemia was noted. As a consequence, when using labeled glucose, the specific enrichment of brain glucose C1 was lower (48.2+/-5.1%) than under normoxia (66.9+/-2.5%). However, relative to this specific enrichment, the (13)C incorporation in amino acids was increased under hypoxia. This suggested primarily a decreased exchange between blood and brain lactate. The glutamate C2/C4 enrichment ratio was higher under hypoxia (0.62+/-0.01) than normoxia (0.51+/-0.06), indicating a lower glutamate turnover relative to the neuronal TCA cycle activity. The glutamine C2/C4 enrichment ratio was also higher under hypoxia (0.87+/-0.07 instead of 0.65+/-0.11), indicating a new balance in the contributions of different carbon sources at the acetyl-CoA level. When using [2-(13)C]acetate as substrate, no difference in glutamine enrichment appeared under hypoxia, whereas a significant decrease in glutamate, aspartate, alanine and lactate enrichments was noted. This indicated a lower trafficking between astrocytes and neurons and a reduced tricarboxylic acid cycle intermediate recycling of pyruvate.  相似文献   

20.
Triiodothyronine (T(3)) exerts direct action on myocardial oxygen consumption (MVO(2)), although its immediate effects on substrate metabolism have not been elucidated. The hypothesis, that T(3) regulates substrate selection and flux, was tested in isovolumic rat hearts under four conditions: control, T(3) (10 nM), epinephrine (Epi), and T(3) and Epi (TE). Hearts were perfused with [1,3-(13)C]acetoacetic acid (AA, 0.17 mM), L-[3-(13)C]lactic acid (LAC, 1.2 mM), U-(13)C-labeled long-chain free fatty acids (FFA, 0.35 mM), and unlabeled D-glucose (5.5 mM) for 30 min. Fractional acetyl-CoA contribution to the tricarboxylic acid cycle (Fc) per substrate was determined using (13)C NMR and isotopomer analysis. Oxidative fluxes were calculated using Fc, the respiratory quotient, and MVO(2). T(3) increased (P < 0.05) Fc(FFA), decreased Fc(LAC), and increased absolute FFA oxidation from 0.58 +/- 0.03 to 0.68 +/- 0.03 micromol. min(-1). g dry wt(-1) (P < 0.05). Epi decreased Fc(FFA) and Fc(AA), although FFA flux increased from 0.58 +/- 0.03 to 0.75 +/- 0.09 micromol. min(-1). g dry wt(-1). T(3) moderated the change in Fc(FFA) induced by Epi. In summary, T(3) exerts direct action on substrate pathways and enhances FFA selection and oxidation, although the Epi effect dominates at a high work state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号