首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Swelling of hepatocytes and other epithelia activates volume-sensitive ion channels that facilitate fluid and electrolyte efflux to restore cell volume, but the responsible signaling pathways are incompletely defined. Previous work in model HTC rat hepatoma cells has indicated that swelling elicits ATP release, which stimulates P2 receptors and activates Cl(-) channels, and that this mechanism is essential for hepatocellular volume recovery. Since P2 receptors are generally coupled to Ca(2+) signaling pathways, we determined whether hepatocellular swelling affected cytosolic [Ca(2+)], and if this involved a purinergic mechanism. Exposure of HTC cells to hypotonic media evoked an increase in cytosolic [Ca(2+)], which was followed by activation of K(+) and Cl(-) currents. Maneuvers that interfered with swelling-induced increases in cytosolic [Ca(2+)], including extracellular Ca(2+) removal and intracellular Ca(2+) store depletion with thapsigargin, inhibited activation of membrane currents and volume recovery. However, the swelling-induced increases in cytosolic [Ca(2+)] were unaffected by either extracellular ATP depletion with apyrase or blockade of P2 receptors with suramin. These findings indicate that swelling elicits an increase in hepatocellular Ca(2+), which is essential for ion channel activation and volume recovery, but that this increase does not stem from activation of volume-sensitive P2 receptors. Collectively, these observations imply that regulatory responses to hepatocellular swelling involve a dual requirement for a purinergic-independent Ca(2+) signaling cascade and a Ca(2+)-independent purinergic signaling pathway.  相似文献   

2.
K+ currents activated by hypotonic cell swelling have been studied in Ehrlich ascites tumour cells by the whole-cell recording mode of the patch-clamp technique. K+ together with Cl- currents developed in the absence of added intracellular Ca2+ and with strong buffering of internal Ca2+ in experiments conducted at 37 degrees C. Manipulation of the extracellular medium with other cations suggests a selectivity sequence of K+ > Rb+ > NH4+ > or = Na+ approximately equals Li+ approximately equals Cs+. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and 20 mV at both physiological and high K+ extracellular solutions. The class III antiarrhytmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease (RVD) response of Ehrlich cells. The leukotriene D4 (LTD4) can activate the same current in isotonicity, consistent with a role for this compound in the signalling process of volume regulation. It is suggested that K+ channels activated by cell swelling belong to the so-called background K+ channel group. These are voltage-independent channels which underlie the resting potential of many cells and have recently been identified as belonging to a family of K+ channels with two pore domains in tandem (2P-4TM). Preliminary experiments show the presence of the TASK-2 channel, a member of the 2P-4TM family inhibited by acid extracellular pH, in Ehrlich cells and suggest that it might underlie the swelling-induced K+ current.  相似文献   

3.
Previous studies performed on apical membranes of seawater fish gills in primary culture have demonstrated the existence of stretch-activated K(+) channels with a conductance of 122 pS. The present report examines the involvement of K(+) channels in ion transport mechanisms and cell swelling. In the whole cell patch-clamp configuration, K(+) currents were produced by exposing cells to a hypotonic solution or to 1 microM ionomycin. These K(+) currents were inhibited by the addition of quinidine and charybdotoxin to the bath solution. Isotopic efflux measurements were performed on cells grown on permeable supports using (86)Rb(+) as a tracer to indicate potassium movements. Apical and basolateral membrane (86)Rb effluxes were stimulated by the exposure of cells to a hypotonic medium. During the hypotonic shock, the stimulation of (86)Rb efflux on the apical side of the monolayer was inhibited by 500 microM quinidine or 100 microM gadolinium but was insensitive to scorpion venom [Leirus quinquestriatus hebraeus (LQH)]. An increased (86)Rb efflux across the basolateral membrane was also reduced by the addition of quinidine and LQH venom but was not modified by gadolinium. Moreover, basolateral and apical membrane (86)Rb effluxes were not modified by bumetanide or thapsigargin. There is convincing evidence for two different populations of K(+) channels activated by hypotonic shock. These populations can be separated according to their cellular localization (apical or basolateral membrane) and as a function of their kinetic behavior and pharmacology.  相似文献   

4.
Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling-induced activation of hIK channels was strongly inhibited by cytochalasin D (CD), in concentrations that caused depolymerization of F-actin filaments, indicating a role for the F-actin cytoskeleton in modulation of hIK by changes in cell volume. In conclusion, hIK and rSK3 channels are activated by cell swelling and inhibited by shrinkage. A role for the F-actin cytoskeleton in the swelling-induced activation of hIK channels is suggested.  相似文献   

5.
Chloride channels are expressed ubiquitously in different cells. However, the activation and roles of volume-activated chloride channels under normal isotonic conditions are not clarified, especially in lymphatic cells. In this study, the activation of basal and volume-activated chloride currents and their roles in maintenance of basal cell volume under isotonic conditions were investigated in human acute lymphoblastic leukemia Molt4 cells. The patch-clamp technique and time-lapse image analysis were employed to record whole-cell currents and cell volume changes. Under isotonic conditions, a basal chloride current was recorded. The current was weakly outward-rectified and volume-sensitive and was not inactivated obviously in the observation period. A 47% hypertonic bath solution and the chloride channel blockers NPPB and tamoxifen suppressed the current. Exposure of cells to 47% hypotonic bath solution activated further the basal current. The hypotonicity-activated current possessed properties similar to those of the basal current and was inhibited by NPPB, tamoxifen, ATP and hypertonic bath solution. Furthermore, extracellular hypotonic challenges swelled the cells and induced a regulatory volume decrease (RVD). Extracellular applications of NPPB, tamoxifen and ATP swelled the cells under isotonic conditions and inhibited the RVD induced by hypotonic cell swelling. The results suggest that some volume-activated chloride channels are activated under isotonic conditions, resulting in the appearance of the basal chloride current, which plays an important role in the maintenance of basal cell volume in lymphoblastic leukemia cells. Chloride channels can be activated further to induce a regulatory volume recovery when cells are swollen.  相似文献   

6.
7.
Membrane Cl(-) channels play an important role in cell volume homeostasis and regulation of volume-sensitive cell transport and metabolism. Heterologous expression of ClC-2 channel cDNA leads to the appearance of swelling-activated Cl(-) currents, consistent with a role in cell volume regulation. Since channel properties in heterologous models are potentially modified by cellular background, we evaluated whether endogenous ClC-2 proteins are functionally important in cell volume regulation. As shown by whole cell patch clamp techniques in rat HTC hepatoma cells, cell volume increases stimulated inwardly rectifying Cl(-) currents when non-ClC-2 currents were blocked by DIDS (100 microM). A cDNA closely homologous with rat brain ClC-2 was isolated from HTC cells; identical sequence was demonstrated for ClC-2 cDNAs in primary rat hepatocytes and cholangiocytes. ClC-2 mRNA and membrane protein expression was demonstrated by in situ hybridization, immunocytochemistry, and Western blot. Intracellular delivery of antibodies to an essential regulatory domain of ClC-2 decreased ClC-2-dependent currents expressed in HEK-293 cells. In HTC cells, the same antibodies prevented activation of endogenous Cl(-) currents by cell volume increases or exposure to the purinergic receptor agonist ATP and delayed HTC cell volume recovery from swelling. These studies provide further evidence that mammalian ClC-2 channel proteins are functional and suggest that in HTC cells they contribute to physiological changes in membrane Cl(-) permeability and cell volume homeostasis.  相似文献   

8.
Recovery from swelling of hepatocytes and selected other epithelia is triggered by intracellular Ca(2+) release from the endoplasmic reticulum, which leads to fluid and electrolyte efflux through volume-sensitive K(+) and Cl(-) channels. The aim of this study was to determine the mechanisms responsible for swelling-mediated hepatocellular Ca(2+) mobilization. Swelling of HTC rat hepatoma cells, evoked by exposure to hypotonic medium, elicited transient increases in intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and cytosolic [Ca(2+)]. The latter was attenuated by inhibition of phospholipase C (PLC) with and by IP(3) receptor blockade with 2-aminoethoxydiphenyl borate, but it was unaffected by ryanodine, an inhibitor of intracellular Ca(2+)-induced Ca(2+) release channels. Hypotonic swelling was associated with a transient increase in tyrosine phosphorylation of PLCgamma, with kinetics that paralleled the increases in intracellular IP(3) levels and cytosolic [Ca(2+)]. Confocal imaging of HTC cells exposed to hypotonic medium revealed a swelling-induced association of tyrosine-phosphorylated PLCgamma with the plasma membrane. These findings suggest that activation of PLCgamma by hepatocellular swelling leads to the generation of IP(3) and stimulates discharge of Ca(2+) from the endoplasmic reticulum via activation of IP(3) receptors. By extension, these data support the concept that tyrosine phosphorylation of PLCgamma represents a critical step in adaptive responses to hepatocellular swelling.  相似文献   

9.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

10.
Electrical properties of the plasma membrane of guard cell protoplasts isolated from stomates of Vicia faba leaves were studied by application of the whole-cell configuration of the patch-clamp technique. The two types of K+ currents that have recently been identified in guard cells may allow efflux of K+ during stomatal closing, and uptake of K+ during stomatal opening (Schroeder et al., 1987). A detailed characterization of ion transport properties of the inward-rectifying (IK+,in) and the outward-rectifying (IK+,out) K+ conductance is presented here. The permeability ratios of IK+,in and IK+,out currents for K+ over monovalent alkali metal ions were determined. The resulting permeability sequences (PK+ greater than PRb+ greater than PNa+ greater than PLi+ much greater than PCs+) corresponded closely to the ion specificity of guard cell movements in V. faba. Neither K+ currents exhibited significant inactivation when K+ channels were activated for prolonged periods (greater than 10 min). The absence of inactivation may permit long durations of K+ fluxes, which occur during guard cell movements. Activation potentials of inward K+ currents were not shifted when external K+ concentrations were changed. This differs strongly from the behavior of inward-rectifying K+ channels in animal tissue. Blue light and fusicoccin induce hyperpolarization by stimulation of an electrogenic pump. From slow-whole-cell recordings it was concluded that electrogenic pumps require cytoplasmic substrates for full activation and that the magnitude of the pump current is sufficient to drive K+ uptake through IK+,in channels. First, direct evidence was gained for the hypothesis that IK+,in channels are a molecular pathway for K+ accumulation by the finding that IK+,in was blocked by Al3+ ions, which are known to inhibit stomatal opening but not closing. The results presented in this study strongly support a prominent role for IK+,in and IK+,out channels in K+ transport across the plasma membrane of guard cells.  相似文献   

11.
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.  相似文献   

12.
Cisplatin, a platinum-based drug, is an important weapon against many types of cancer. It induces apoptosis by forming adducts with DNA, although many aspects of its mechanism of action remain to be clarified. Previously, we found a role for the volume-sensitive, outwardly rectifying Cl(-) channel in cisplatin-induced apoptosis. To investigate the possibility that cation channels also have a role in the cellular response to cisplatin, we examined the activity of cation channels in cisplatin-sensitive KB-3-1 (KB) epidermoid cancer cells by the whole cell patch-clamp method. A cation channel in KB cells, activated by hypotonic stress, was identified as the Ca2+-activated, intermediate-conductance K+ (IK1) channel on the basis of its requirement for intracellular Ca2+, its blockage by the blockers clotrimazole and triarylmethane-34, and its suppression by a dominant-negative construct. Activity of this channel was not observed in KCP-4 cells, a cisplatin-resistant cell line derived from KB cells, and its molecular expression, observed by semiquantitative RT-PCR and immunostaining, appeared much reduced. Cell volume measurements confirmed a physiological role for the IK1 channel as a component of the volume-regulatory machinery in KB cells. A possible role of the IK1 channel in cisplatin-induced apoptosis was investigated. It was found that clotrimazole and triarylmethane-34 inhibited a cisplatin-induced decrease in cell viability and increase in caspase-3/7 activity, whereas 1-ethyl-2-benzimidazolinone, an activator of the channel, had the opposite effect. Thus IK1 channel activity appears to mediate, at least in part, the response of KB cells to cisplatin treatment.  相似文献   

13.
The majority of malignant primary brain tumors are gliomas, derived from glial cells. Grade IV gliomas, Glioblastoma multiforme, are extremely invasive and the clinical prognosis for patients is dismal. Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma including ion channels and calcium signaling pathways. In this study, we investigated the localization and functional relevance of transient receptor potential canonical (TRPC) channels in glioma migration. We show that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF). Stimulation with EGF results in TRPC1 channel localization to the leading edge of migrating D54MG glioma cells. Additionally, TRPC1 channels co-localize with the lipid raft proteins, caveolin-1 and β-cholera toxin, and biochemical assays show TRPC1 in the caveolar raft fraction of the membrane. Chemotaxis toward EGF was lost when TRPC channels were pharmacologically inhibited or by shRNA knockdown of TRPC1 channels, yet without affecting unstimulated cell motility. Moreover, lipid raft integrity was required for gliomas chemotaxis. Disruption of lipid rafts not only impaired chemotaxis but also impaired TRPC currents in whole cell recordings and decreased store-operated calcium entry as revealed by ratiomeric calcium imaging. These data indicated that TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.  相似文献   

14.
Mouse 3T3-L1 preadipocytes are widely used for metabolic study of obesity; however, their cellular physiology is not fully understood. The present study investigates functional ion channels and their role in the regulation of cell proliferation using whole-cell patch voltage-clamp, RT-PCR, Western blot, and cell proliferation assay in undifferentiated 3T3-L1 preadipocytes. We found three types of ionic currents present in 3T3-L1 preadipocytes, including an inwardly-rectifying K(+) current (I(Kir), recorded in 15% of cells) inhibited by Ba(2+), a Ca(2+)-activated intermediate K(+) current (IK(Ca), recorded in 44% of cells) inhibited by clotrimazole (or TRAM-34) as well as a chloride current (I(Cl)) inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in 12% of cells, which can be activated in all cells with hypotonic (0.8 T) insult, implicating a volume-sensitive I(Cl) (I(Cl.vol)). RT-PCR and Western blot analysis revealed the expression of KCa3.1 (for IK(Ca)), Kir2.1 (for I(Kir)), and Clcn3 (for I(Cl.vol)). Blockade of IK(Ca) with TRAM-34 or I(Cl.vol) with DIDS inhibited cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific siRNAs also suppressed cell proliferation. Flow cytometry analysis showed that blockade or silencing of KCa3.1 or Clcn3 channels with corresponding blockers or siRNAs caused an accumulation of cells at the G0/G1 phase. These results demonstrate that three functional ion channel currents, I(KCa), I(Cl.vol), and I(Kir), are heterogeneously present in 3T3-L1 preadipocytes. I(KCa) and I(Cl.vol) participate in the regulation of cell proliferation.  相似文献   

15.
Cell volume recovery in response to swelling requires reorganization of the cytoskeleton and fluid efflux. We have previously shown that electrolyte and fluid efflux via K+ and Cl- channels is controlled by swelling-induced activation of phospholipase Cgamma (PLCgamma). Recently, integrin engagement has been suggested to trigger responses to swelling through activation of Rho family GTPases and Src kinases. Because both PLCgamma and Rho GTPases can be regulated by Src during integrin-mediated cytoskeletal reorganization, we sought to identify swelling-induced Src effectors. Upon hypotonic challenge, Src was rapidly activated in transient plasma membrane protrusions, where it colocalized with Vav, an activator of Rho GTPases. Inhibition of Src with PP2 attenuated phosphorylation of Vav. PP2 also attenuated phosphorylation of PLCgamma, and inhibited swelling-mediated activation of K+ and Cl- channels and cell volume recovery. These findings suggest that swelling-induced Src regulates cytoskeletal dynamics, through Vav, and fluid efflux, through PLCgamma, and thus can coordinate structural reorganization with fluid balance to maintain cellular integrity.  相似文献   

16.
It has been suggested that L-type Ca2+ channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca2+ channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca2+ channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba2+ currents (IBa) through L-type Ca2+ channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca2+ channel activity but did not alter the voltage-dependent characteristics of Ca2+ channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31–8425 or Go-6983, prevented IBa enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased IBa under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on IBa when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca2+ channel activity in rabbit portal vein smooth muscle cells through activation of PKC. cell swelling; protein kinases; calcium current  相似文献   

17.
Exposure of cultured human epithelial cells (Intestine 407) to a hypotonic solution results in initial osmotic swelling and in a subsequent volume decrease near to the original level. The regulatory volume decrease was inhibited by reduction of the extracellular free Ca2+ concentration to 90 nM. Single epithelial cells responded to a hypotonic challenge with a biphasic increase in the cytosolic free Ca2+ level from about 90 to 200 nM. Both phases of the Ca2+ rise were abolished by reducing the extracellular Ca2+ to 90 nM. In the presence of caffeine (20 mM), the second-phase Ca2+ response to a hypotonic challenge occurred earlier immediately after the first-phase response. The second-phase Ca2+ response was selectively impaired by adenine (10 mM), procaine (1 mM) or ryanodine (5 to 10 microM). These blockers for Ca2(+)-induced Ca2+ release channels inhibited volume regulation after osmotic swelling. It is concluded that Ca2(+)-induced Ca2+ release from a ryanodine-sensitive store is a prerequisite for the volume regulation of human intestinal epithelial cells under hypotonic conditions.  相似文献   

18.
Clostridium perfringens beta toxin is an important agent of necrotic enteritis. Of the 10 cell lines tested, only the HL 60 cell line was susceptible to beta toxin. The toxin induced swelling and lysis of the cell. Treatment of the cells with the toxin resulted in K+ efflux from the cells and Ca2+, Na+, and Cl- influxes. These events reached a maximum just before the cells were lysed by the toxin. Incubation of the cells with the toxin showed the formation of toxin complexes of about 191 and 228 kDa, which were localized in the domains that fulfilled the criteria of lipid rafts. The complex of 228 kDa was observed until 30 min after incubation, and only the complex of 191 kDa was remained after 60 min. Treatment of the cells with methyl-beta-cyclodextrin or cholesterol oxidase blocked binding of the toxin to the rafts and the toxin-induced K+ efflux and swelling. The toxin-induced Ca2+ influx and morphological changes were inhibited by an increase in the hydrodynamic diameter of polyethylene glycols from 200 to 400 and markedly or completely inhibited by polyethylene glycol 600 and 1000. However, these polyethylene glycols had no effect on the toxin-induced K+ efflux. The toxin induced carboxyfluorescein release from phosphatidyl-choline-cholesterol liposomes containing carboxyfluorescein and formed an oligomer with 228 kDa in a dose-dependent manner but did not form an oligomer with the 191-kDa complex. We conclude that the toxin acts on HL 60 cells by binding to lipid rafts and forming a functional oligomer with 228 kDa.  相似文献   

19.
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents.  相似文献   

20.
Necrosis is considered as a non-specific form of cell death that induces tissue inflammation and is preceded by cell swelling. This increase in cell volume has been ascribed mainly to defective outward pumping of Na+ caused by metabolic depletion and/or to increased Na+ influx via membrane transporters. A specific mechanism of swelling and necrosis driven by the influx of Na+ through nonselective cation channels has been recently proposed (Barros et al., 2001a). We have characterized further the properties of the nonselective cation channel (NSCC) in HTC cells. The NSCC shows a conductance of approximately 18 pS, is equally permeable to Na+ and K+, impermeant to Ca2+, requires high intracellular Ca2+ as well as low intracellular ATP for activation and is inhibited by flufenamic acid. Hydrogen peroxide induced a significant increase in cell volume that was dependent on external Na+. We propose that the NSCC, which is ubiquitous though largely inactive in healthy cells, becomes activated under severe oxidative stress. The ensuing Na+ influx initiates via positive feedback a series of metabolic and electrolytic disturbances, resulting in cell death by necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号