首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the recombination of plasmids bearing bom and cer sites. The bom ( basis of mobilization) site is required for conjugative transfer, while the cer ( Col E1 resolution) site is involved in the resolution of plasmid multimers, which increases plasmid stability. We constructed a pair of parent plasmids in such a way as to allow us select clones containing recombinant plasmids directly. Clone selection was based on the McrA sensitivity of recipient host DNA modified by M. Ecl18kI, which is encoded by one of the parent plasmids. The recombinant plasmid contains segments originating from both parental DNAs, which are bounded by bom and cer sites. Its structure is in accordance with our previously proposed model for recombination mediated by bom and cer sequences. The frequency of recombinant plasmid formation coincided with the frequency of recombination at the bom site. We also show that bom-mediated recombination in trans, unlike in cis, is independent of other genetic determinants on the conjugative plasmids.  相似文献   

2.
A group of low molecular-weight ColE1-like plasmids carrying the aph sequence type aph(ii) from three different Salmonella serovars were sequenced. These plasmids carry two or more copies of IS903 elements, with up to 21bp sequence differences to one another, two of which flank the aph gene. This group of plasmids did not appear to carry any known mobilization genes and instead carry three open reading frames encoding hypothetical proteins of unknown function possibly organized in an operon. The plasmid replication region (RNA I/II--rom) of this plasmid group showed extensive homology to that of pKPN2 plasmid of Klebsiella pneumoniae and pCol-let plasmid of Escherichia coli. Three of the four plasmids had identical sequences, and the fourth had an extra copy of IS903 with target duplication, suggesting a recent divergence in the different Salmonella serovars from a common ancestor.  相似文献   

3.
C Alén  D J Sherratt    S D Colloms 《The EMBO journal》1997,16(17):5188-5197
Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.  相似文献   

4.
The site-specific recombination system used by multicopy plasmids of the ColE1 family uses two identical plasmid-encoded recombination sites and four bacterial proteins to catalyze the recombination reaction. In the case of the Escherichia coli plasmid ColE1, the recombination site, cer, is a 280 by DNA sequence which is acted on by the products of the argR, pepA, xerC and xerD genes. We have constructed a model system to study this recombination system, using tandemly repeated recombination sites from the plasmids ColE1 and NTP16. These plasmids have allowed us precisely to define the region of strand exchange during site-specific recombination, and to derive a model for cer intramolecular site-specific recombination.  相似文献   

5.
The site-specific recombination system used by multicopy plasmids of the ColE1 family uses two identical plasmid-encoded recombination sites and four bacterial proteins to catalyze the recombination reaction. In the case of the Escherichia coli plasmid ColE1, the recombination site, cer, is a 280 by DNA sequence which is acted on by the products of the argR, pepA, xerC and xerD genes. We have constructed a model system to study this recombination system, using tandemly repeated recombination sites from the plasmids ColE1 and NTP16. These plasmids have allowed us precisely to define the region of strand exchange during site-specific recombination, and to derive a model for cer intramolecular site-specific recombination.  相似文献   

6.
Summary The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding capacity for a protein of about 300 amino acids is present in both ColE2 and ColE3 and it actually specifies the Rep (for replication) protein, which is the plasmid specific trans-acting factor required for autonomous replication. The amino acid sequences of the Rep proteins of ColE2 and ColE3 are quite homologous (greater than 90%). The cis-acting sites (origins) where replication initiates in the presence of the trans-acting factors consist of 32 bp for ColE2 and 33 bp for ColE3. They are the smallest of all the prokaryotic replication origins so far reported. They are nonhomologous only at two positions, one of which, a deletion of a single nucleotide in ColE2 (or an insertion in ColE3), determines the plasmid specificity in interaction of the origins with the Rep proteins. Both plasmids carry a region with an identical nucleotide sequence and the one in ColE2, the IncA region, has been shown to express incompatibility against both ColE2 and ColE3. These results indicate that these plasmids share a common IncA determinant. A possibility that a small antisense RNA is involved in copy number control and incompatibility (IncA function) was suggested.  相似文献   

7.
S Hiraga  T Sugiyama    T Itoh 《Journal of bacteriology》1994,176(23):7233-7243
The incA gene product of ColE2-P9 and ColE3-CA38 plasmids is an antisense RNA that regulates the production of the plasmid-coded Rep protein essential for replication. The Rep protein specifically binds to the origin and synthesizes a unique primer RNA at the origin. The IncB incompatibility is due to competition for the Rep protein among the origins of the same binding specificity. We localized the regions sufficient for autonomous replication of 15 ColE plasmids related to ColE2-P9 and ColE3-CA38 (ColE2-related plasmids), analyzed their incompatibility properties, and determined the nucleotide sequences of the replicon regions of 9 representative plasmids. The results suggest that all of these plasmids share common mechanisms for initiation of DNA replication and its control. Five IncA specificity types, 4 IncB specificity types, and 9 of the 20 possible combinations of the IncA and IncB types were found. The specificity of interaction of the Rep proteins and the origins might be determined by insertion or deletion of single nucleotides and substitution of several nucleotides at specific sites in the origins and by apparently corresponding insertion or deletion and substitution of amino acid sequences at specific regions in the C-terminal portions of the Rep proteins. For plasmids of four IncA specificity types, the nine-nucleotide sequences at the loop regions of the stem-loop structures of antisense RNAs are identical, suggesting an evolutionary significance of the sequence. The mosaic structures of the replicon regions with homologous and nonhomologous segments suggest that some of them were generated by exchanging functional parts through homologous recombination.  相似文献   

8.
The mobilization properties of three plasmids were examined after cotransfer from Shigella flexneri to Escherichia coli. The largest plasmid, pCN1, was shown to be a conjugative R factor that could promote its own transfer and allow cotransfer of a 4.1-kilobase plasmid, pCN3; mobilization of the third plasmid, pCN2 (6.3 kilobases), required the presence of both pCN1 and pCN3. Sequences from pCN2 and pCN3 homologous to the bom (basis of mobilization) sites of ColE1 and pBR322 were localized by analysis of site-specific deletion derivatives generated in vivo during the transfer of composite plasmids and were characterized by DNA sequencing.  相似文献   

9.
10.
Two recombinases, XerC and XerD, act at the recombination sites psi and cer in plasmids pSC101 and ColE1 respectively. Recombination at these sites maintains the plasmids in a monomeric state and helps to promote stable plasmid inheritance. The accessory protein PepA acts at both psi and cer to ensure that only intramolecular recombination takes place. An additional accessory protein, ArgR, is required for recombination at cer but not at psi . Here, we demonstrate that the ArcA/ArcB two-component regulatory system of Escherichia coli , which mediates adaptation to anaerobic growth conditions, is required for efficient recombination in vivo at psi . Phosphorylated ArcA binds to psi in vitro and increases the efficiency of recombination at this site. Binding of ArcA to psi may contribute to the formation of a higher order synaptic complex between a pair of psi sites, thus helping to ensure that recombination is intramolecular.  相似文献   

11.
Plasmid ColE1 specifies a recombination site (cer) which participates in the conversion of plasmid dimers to monomers. The uncontrolled accumulation of dimers (and higher oligomeric forms) would otherwise lead to plasmid instability. Exonuclease III-generated deletions have been used to define the left-hand boundary of the cer site. Deletions which have lost up to 60 bp adjacent to the boundary no longer mediate the conversion of plasmid dimers to monomers, but still recombine with a wild-type site. Although this boundary region is essential for dimer resolution, its DNA sequence is poorly conserved among multimer resolution sites in related plasmids. We present evidence that its function is to influence the three-dimensional organization of the site and suggest that it may be required for the formation of a condensed nucleoprotein complex.  相似文献   

12.
We report a novel type of recA independent recombination between plasmids ColE1 or ColK and a naturally occurring miniplasmid (pLG500). This miniplasmid can be complemented for mobilization and relaxation in the presence of ColE1 or ColK. Recombination between ColE1 and pLG500, or ColK and pLG500, was site-specific, and was only detected following the mobilization of these plasmids. The composite plasmids thus formed were stable, but recombination (resulting in dissociation of their component replicons) was again detected following mobilization. For ColE1, the site at which cointegration with pLG500 occurred was mapped to within 47 base pairs of the relaxation nicking site; for ColK, the recombination site was localized to the same region as its genetically defined transfer origin. The generation of these cointegrate plasmids is consistent with the hypothesis that mobilization entails relaxation nicking, transfer of the nicked single strand of DNA, and recircularization of the transferred single strand by ligation of 3′ and 5′ termini by the relaxation protein bound to the 5′ nick terminus. Since both plasmids are mobilized by the same proteins, their cointegration can be explained as a consequence of the ligation of the 5′ end of one plasmid to the 3′ end of the other, and vice versa.  相似文献   

13.
Normal segregation of the Escherichia coli chromosome and stable inheritance of multicopy plasmids such as ColE1 requires the Xer site-specific recombination system. Two putative lambda integrase family recombinases, XerC and XerD, participate in the recombination reactions. We have constructed an E. coli strain in which the expression of xerC can be tightly regulated, thereby allowing the analysis of controlled recombination reactions in vivo. Xer-mediated recombination in this strain generates Holliday junction-containing DNA molecules in which a specific pair of strands has been exchanged in addition to complete recombinant products. This suggests that Xer site-specific recombination utilizes a strand exchange mechanism similar or identical to that of other members of the lambda integrase family of recombination systems. The controlled in vivo recombination reaction at cer requires recombinase and two accessory proteins, ArgR and PepA. Generation of Holliday junctions and recombinant products is equally efficient in RuvC- and RuvC+ cells, and in cells containing a multicopy RuvC+ plasmid. Controlled XerC expression is also used to analyse the efficiency of recombination between variant cer sites containing sequence alterations and heterologies within their central regions.  相似文献   

14.
The heritable stability in Escherichia coli of the multicopy plasmid ColE1 and its natural relatives requires that the plasmids be maintained in the monomeric state. Plasmid multimers, that arise through recA-dependent homologous recombination, are normally converted to monomers by a site-specific recombination system that acts at a specific plasmid site (cer in ColE1). No plasmid functions that act at this site have been identified. In contrast, two unlinked E.coli genes that encode functions required for cer-mediated site-specific recombination have been identified. Here we describe the isolation and characterization of one such gene (xerA) and show it to be identical to the gene encoding the repressor of the arginine biosynthetic genes (argR). The argR protein binds to cer DNA both in vivo and in vitro in the presence of arginine. We believe this binding is required to generate a higher order protein-DNA complex within the recombinational synapse. The argR gene of Bacillus subtilis complements an E.coli argR deficiency for cer-mediated recombination despite the two proteins having only 27% amino acid identity.  相似文献   

15.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

16.
Nucleotide sequence and gene organization of ColE1 DNA   总被引:48,自引:0,他引:48  
The primary structure of the plasmid ColE1 DNA has been determined. The plasmid DNA consists of 6646 base pairs (molecular mass of 4.43 MDa) and is 48.46% in GC content. The phi 80 trp insert of the composite plasmid of ColE1, pVH51, has also been determined. The determination of the nucleotide sequence of ColE1 DNA provides the basis for examining the relationships between the DNA sequence and the gene organization of the plasmid. The focus of this paper is to use this sequence data coupled with a review of the literature and our own work to examine the nine known functional regions of ColE1: imm (colicin E1 immunity), rep (replication function), inc (plasmid incompatibility and copy number control), bom (basis of mobility), rom (modulator of inhibition of primer formation by RNA I), mob (plasmid mobilization), cer (determinant for conversion of plasmid multimers to monomers), exc (plasmid entry exclusion), cea (structural gene for colicin E1), and kil (structural gene for the Kil protein).  相似文献   

17.
Xer-mediated site-specific recombination in vitro.   总被引:12,自引:2,他引:10       下载免费PDF全文
The Xer site-specific recombination system acts at ColE1 cer and pSC101 psi sites to ensure that these plasmids are in a monomeric state prior to cell division. We show that four proteins, ArgR, PepA, XerC and XerD are necessary and sufficient for recombination between directly repeated cer sites on a supercoiled plasmid in vitro. Only PepA, XerC and XerD are required for recombination at psi in vitro. Recombination at cer and psi in vitro requires negative supercoiling and is exclusively intramolecular. Strand exchange at cer produces Holliday junction-containing products in which only the top strands have been exchanged. This reaction requires the catalytic tyrosine residue of Xer C but not that of XerD. Recombination at psi gives catenated circular resolution products. Strand exchange at psi is sequential. XerC catalyses the first (top) strand exchange to make a Holiday junction intermediate and XerD catalyses the second (bottom) strand exchange.  相似文献   

18.
A Akutsu  H Masaki    T Ohta 《Journal of bacteriology》1989,171(12):6430-6436
The primary structure of a 3.1-kilobase E6 or E3 segment carrying colicin and related genes was determined. Plasmid ColE6-CT14 showed striking homology to ColE3-CA38 throughout this segment, including homology to the secondary immunity gene, immE8, downstream of the E6 or E3 immunity gene. The ColE3-CA38 and ColE6-CT14 sequences, however, contained an exceptional hot spot region encoding both the colicin-active domain (RNase region) and the immunity protein, reflecting their different immunity specificities. On the other hand, some chimeric plasmids were constructed through homologous recombination between colicin E3 and cloacin DF13 operons. The resulting plasmids were deduced to produce chimeric colicins with a colicin E3-type N-terminal part, a cloacin DF13-type C-terminal-active domain, and the DF13 immunity protein. The killing spectra of the chimeric colicins and the immunities of the plasmids were identical to those of colicin E6 and ColE6-CT14, respectively, showing that the colicin E6 immunity specificity is completely equivalent to that of cloacin DF13. Nevertheless, colicin E6 has been found to show a sequence diversity from cloacin DF13 almost to the same extent as that from colicin E3 in their RNase and immunity regions, indicating that only a small number of amino acids defines the immunity specificity for discrimination between colicins E3 and E6 (or cloacin DF13).  相似文献   

19.
20.
pHS-2 is a 3-kb plasmid originally isolated fromShigella flexneriinfections associated with reactive arthritis in humans. This plasmid is stably maintained in many clinical isolates ofShigella flexneri.The nucleotide sequence of this plasmid displays two closely linked regions that may play a role in the maintenance of this plasmid. One region consists of a 250-bp locus showing a significant homology to the ColE1cersite. The results indicate that thecer-like site of pHS-2, like the ColE1cersite, acts as arecA-independent, site-specific recombination site involved in the resolution of multimers, requiring the presence of the host-encoded factors ArgR, PepA, XerC, and XerD. The second region consists of a 36-kDa open reading frame involved in generating resistance to the bactericidal effect of complement, which confers a selective advantage to cells containing this sequence. The results also indicate that pHS-2 can replicate in another species of Enterobacteriaceae (Escherichia coli) and is mobilized by the F plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号