首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti bacteroids within alfalfa nodules and for succinate-induced cellular pleomorphism in free-living cultures. Also, the Sdh- strain had a 3.5-fold lower rate of oxygen consumption in the defined medium than did the wild type.  相似文献   

2.
Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti bacteroids within alfalfa nodules and for succinate-induced cellular pleomorphism in free-living cultures. Also, the Sdh- strain had a 3.5-fold lower rate of oxygen consumption in the defined medium than did the wild type.  相似文献   

3.
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.  相似文献   

4.
A defined insertion mutant of a gene encoding a homolog of the rhizobial C4-dicarboxylate permease (dctA) was constructed in Rhizobium tropici strain CIAT899. This mutant (GA1) was unable to grow on fumarate or malate; however, in contrast with other rhizobial dctA mutants, it retained a limited ability to grow on succinate with ammonia as a nitrogen source. Our results suggest the presence of a novel succinate-specific transport system in R. tropici. Biochemical characterization indicated that this alternative transport system in GAI is active and dependent on an energized membrane. It was also induced by succinate and aspartate, and was repressed by glucose and glycerol. Bean plants inoculated with GA1 showed a reduced nitrogen-fixing ability, achieving only 29% of the acetylene reduction activity determined in CIAT899 strain nodules, 33 days after inoculation. Also, bean plants inoculated with GA1 had reduced shoot dry weight compared with plants inoculated with the wild-type strain.  相似文献   

5.
A mutant strain of Bradyrhizobium japonicum USDA110 lacking isocitrate dehydrogenase activity was created to determine whether this enzyme was required for symbiotic nitrogen fixation with soybean (Glycine max cv. Williams 82). The isocitrate dehydrogenase mutant, strain 5051, was constructed by insertion of a streptomycin resistance gene cassette. The mutant was devoid of isocitrate dehydrogenase activity and of immunologically detectable protein, indicating there is only one copy in the genome. Strain 5051 grew well on a variety of carbon sources, including arabinose, pyruvate, succinate, and malate, but, unlike many microorganisms, was a glutamate auxotroph. Although the formation of nodules was slightly delayed, the mutant was able to form nodules on soybean and reduce atmospheric dinitrogen as well as the wild type, indicating that the plant was able to supply sufficient glutamate to permit infection. Combined with the results of other citric acid cycle mutants, these results suggest a role for the citric acid cycle in the infection and colonization stage of nodule development but not in the actual fixation of atmospheric dinitrogen.  相似文献   

6.
The gltA gene, encoding Sinorhizobium meliloti 104A14 citrate synthase, was isolated by complementing an Escherichia coli gltA mutant. The S. meliloti gltA gene was mutated by inserting a kanamycin resistance gene and then using homologous recombination to replace the wild-type gltA with the gltA::kan allele. The resulting strain, CSDX1, was a glutamate auxotroph, and enzyme assays confirmed the absence of a requirement for glutamate. CSDX1 did not grow on succinate, malate, aspartate, pyruvate, or glucose. CSDX1 produced an unusual blue fluorescence on medium containing Calcofluor, which is different from the green fluorescence found with 104A14. High concentrations of arabinose (0.4%) or succinate (0. 2%) restored the green fluorescence to CSDX1. High-performance liquid chromatography analyses showed that CSDX1 produced partially succinylated succinoglycan. CSDX1 was able to form nodules on alfalfa, but these nodules were not able to fix nitrogen. The symbiotic defect of a citrate synthase mutant could thus be due to disruption of the infection process or to the lack of energy generated by the tricarboxylic acid cycle.  相似文献   

7.
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.  相似文献   

8.
The transport of succcinate was studied inRhizobium meliloti M5N1. Succinate accumulation was a saturable function of the succinate concentration, and the apparent Km and Vmax values were respectively 2.9 M and 79 nmoles/min·mg protein. Strong inhibition of succinate transport was observed in the presence of 10 mM DNA and 4 mM azide, whereas arsenate and fluorure had no effect. Fumarate competitively inhibited succinate transport; the Ki value was between 3 and 6 M.A succinate transport mutant ofR. meliloti M5N1 was selected after nitrosoguanidine mutagenesis. It failed to grow on succinate, malate, or fumarate, but grew on arabinose, glutamate, pyruvate, and other carbohydrates. The mutant strain formed white (presumably leghemoglobin deficient) and ineffective nodules, since the acetylene reduction assay showed no nitrogenase activity.  相似文献   

9.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

10.
An aerobic succinate production system developed by Lin et al. (Metab Eng, in press) is capable of achieving the maximum theoretical succinate yield of 1.0 mol/mol glucose for aerobic conditions. It also exhibits high succinate productivity. This succinate production system is a mutant E. coli strain with five pathways inactivated: DeltasdhAB, Delta(ackA-pta), DeltapoxB, DeltaiclR, and DeltaptsG. The mutant strain also overexpresses Sorghum vulgare pepc. This mutant strain is designated HL27659k(pKK313). Fed-batch reactor experiments were performed for the strain HL27659k(pKK313) under aerobic conditions to determine and demonstrate its capacity for high-level succinate production. Results showed that it could produce 58.3 g/l of succinate in 59 h under complete aerobic conditions. Throughout the entire fermentation the average succinate yield was 0.94+/-0.07 mol/mol glucose, the average productivity was 1.08+/-0.06 g/l-h, and the average specific productivity was 89.77+/-3.40 mg/g-h. Strain HL27659k (pKK313) is, thus, capable of large-scale succinate production under aerobic conditions. The results also showed that the aerobic succinate production system using the designed strain HL27659k(pKK313) is more practical than conventional anaerobic succinate production systems. It has remarkable potential for industrial-scale succinate production and process optimization.  相似文献   

11.
A method is described which permits the selection of mutants of Neurospora crassa that are deficient in succinic dehydrogenase activity. The method relies on the observation that succinic dehydrogenase-deficient strains fail to reduce the dye nitrotetrazolium blue when overlaid with the dye in the presence of succinate and phenazine methosulfate. Wild-type colonies reduced the dye and turned blue, whereas mutant colonies remained colorless. In this communication we present studies of a mutant, SDH-1, isolated by this method. The mutant had 18% of the succinic dehydrogenase activity of the parent strain used in the mutation experiments as determined from the ratio of Vmax activities obtained from Lineweaver-Burk plots. The SDH-1 mutant segregated in a Mendelian manner when back-crossed to its parent strain. Succinate oxidase activity in SDH-1 was low and was markedly inhibited by adenosine 5'-diphosphate. The succinate oxidase activity of the parent strain was high and was not affected by the presence of adenosine 5'-diphosphate.  相似文献   

12.
Bradyrhizobium japonicum mutant strain NAD163, containing a 30-kb deletion mutant encompassing the hsfA gene, was inoculated onto a broad range of legume species to test host-specificity. Most legume species formed ineffective nodules except Vigna angularis var. Chibopat and Glycine max var. Pureunkong. A hsfA insertion mutant, BjjC211, gave similar results to strain NAD163, implying that many legume species require HsfA for host-specific nitrogen fixation. To determine whether other genes in the deleted region of NAD163 are also necessary, the hsfA gene was conjugally transferred into the NAD163 mutant. The transconjugant formed effective nodules on the host legume plants, which earlier had formed ineffective nodules with mutant NAD163. Thus, we conclude that the hsfA gene in the 30-kb region is the only factor responsible for host-specific nitrogen fixation in legume plants.  相似文献   

13.
Various Escherichia coli mutant strains designed for succinate production under aerobic conditions were characterized in chemostat. The metabolite profiles, enzyme activities, and gene expression profiles were studied to better understand the metabolic network operating in these mutant strains. The most efficient succinate producing mutant strain HL27659k was able to achieve a succinate yield of 0.91 mol/mol glucose at a dilution rate of 0.1/h. This strain has the five following mutations: sdhAB, (ackA-pta), poxB, iclR, and ptsG. Four other strains involved in this study were HL2765k, HL276k, HL2761k, and HL51276k. Strain HL2765k has mutations in sdhAB, (ackA-pta), poxB and iclR, strain HL276k has mutations in sdhAB, (ackA-pta) and poxB, strain HL2761k has mutations in sdhAB, (ackA-pta), poxB and icd, and strain HL51276k has mutations in iclR, icd, sdhAB, (ackA-pta) and poxB. Enzyme activity data showed strain HL27659k has substantially higher citrate synthase and malate dehydrogenase activities than the other four strains. The data also showed that only iclR mutation strains exhibited isocitrate lyase and malate synthase activities. Gene expression profiles also complemented the studies of enzyme activity and metabolites from chemostat cultures. The results showed that the succinate synthesis pathways engineered in strain HL27659k were highly efficient, yielding succinate as the only major product produced under aerobic conditions. Strain HL27659k was the only strain without pyruvate accumulation, and its acetate production was the least among all the mutant strains examined.  相似文献   

14.
A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained by selecting those which restored the ability of 4F6 to grow on succinate. The Tn5 insertion in 4F6 was found to be within a 5.9-kilobase (kb) EcoRI fragment common to the complementing cosmids. Site-specific Tn5-mutagenesis revealed dct genes in a segment of DNA about 4 kb in size extending from within the 5.9-kb EcoRI fragment into an adjacent 2.9-kb EcoRI fragment. The 4F6 mutation was found to be in a complementation group in which mutations yielded a Fix- phenotype, whereas other dct mutations in the region resulted in mutants which produced effective nodules in most, although not all, plant tests (partially Fix-). The dct region was found to be located on a megaplasmid known to carry genes required for exopolysaccharide production.  相似文献   

15.
The open reading frames sll1625 and sll0823, which have significant sequence similarity to genes coding for the FeS subunits of succinate dehydrogenase and fumarate reductase, were deleted singly and in combination in the cyanobacterium Synechocystis sp. strain PCC 6803. When the organic acid content in the Deltasll1625 and Deltasll0823 strains was analyzed, a 100-fold decrease in succinate and fumarate concentrations was observed relative to the wild type. A similar analysis for the Deltasll1625 Deltasll0823 strain revealed that 17% of the wild-type succinate levels remained, while only 1 to 2% of the wild-type fumarate levels were present. Addition of 2-oxoglutarate to the growth media of the double mutant strain prior to analysis of organic acids in cells caused succinate to accumulate. This indicates that succinate dehydrogenase activity had been blocked by the deletions and that 2-oxoglutarate can be converted to succinate in vivo in this organism, even though a traditional 2-oxoglutarate dehydrogenase is lacking. In addition, reduction of the thylakoid plastoquinone pool in darkness in the presence of KCN was up to fivefold slower in the mutants than in the wild type. Moreover, in vitro succinate dehydrogenase activity observed in wild-type membranes is absent from those isolated from the double mutant and reduced in those from the single mutants, further indicating that the sll1625 and sll0823 open reading frames encode subunits of succinate dehydrogenase complexes that are active in the thylakoid membrane of the cyanobacterium.  相似文献   

16.
Rhizobium sp. wild-type strain GRH2 was originally isolated from root nodules of the leguminous tree Acacia cyanophylla and has a broad host range which includes herbaceous legumes, e.g., Trifolium spp. We examined the extracellular exopolysaccharides (EPSs) produced by strain GRH2 and found three independent glycosidic structures: a high-molecular-weight acidic heteropolysaccharide which is very similar to the acidic EPS produced by Rhizobium leguminosarum biovar trifolii ANU843, a low-molecular-weight native heterooligosaccharide resembling a dimer of the repeat unit of the high-molecular-weight EPS, and low-molecular-weight neutral beta (1,2)-glucans. A Tn5 insertion mutant derivative of GRH2 (exo-57) that fails to form acidic heteropolysaccharides was obtained. This Exo- mutant formed nitrogen-fixing nodules on Acacia plants but infected a smaller proportion of cells in the central zone of the nodules than did wild-type GRH2. In addition, the exo-57 mutant failed to nodulate several herbaceous legume hosts that are nodulated by wild-type strain GRH2.  相似文献   

17.
Alder (Alnus glutinosa) and more than 200 angiosperms that encompass 24 genera are collectively called actinorhizal plants. These plants form a symbiotic relationship with the nitrogen-fixing actinomycete Frankia strain HFPArI3. The plants provide the bacteria with carbon sources in exchange for fixed nitrogen, but this metabolite exchange in actinorhizal nodules has not been well defined. We isolated an alder cDNA from a nodule cDNA library by differential screening with nodule versus root cDNA and found that it encoded a transporter of the PTR (peptide transporter) family, AgDCAT1. AgDCAT1 mRNA was detected only in the nodules and not in other plant organs. Immunolocalization analysis showed that AgDCAT1 protein is localized at the symbiotic interface. The AgDCAT1 substrate was determined by its heterologous expression in two systems. Xenopus laevis oocytes injected with AgDCAT1 cRNA showed an outward current when perfused with malate or succinate, and AgDCAT1 was able to complement a dicarboxylate uptake-deficient Escherichia coli mutant. Using the E. coli system, AgDCAT1 was shown to be a dicarboxylate transporter with a K(m) of 70 microm for malate. It also transported succinate, fumarate, and oxaloacetate. To our knowledge, AgDCAT1 is the first dicarboxylate transporter to be isolated from the nodules of symbiotic plants, and we suggest that it may supply the intracellular bacteria with dicarboxylates as carbon sources.  相似文献   

18.
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were consideraly more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N'N'-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   

19.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

20.
Cellular and mitochondrial metabolite levels were measured in yeast TCA cycle mutants (sdh2Δ or fum1Δ) lacking succinate dehydrogenase or fumarase activities. Cellular levels of succinate relative to parental strain levels were found to be elevated ~8-fold in the sdh2Δ mutant and ~4-fold in the fum1Δ mutant, and there was a preferential increase in mitochondrial levels in these mutant strains. The sdh2Δ and fum1Δ strains also exhibited 3-4-fold increases in expression of Cit2, the cytosolic form of citrate synthase that functions in the glyoxylate pathway. Co-disruption of the SFC1 gene encoding the mitochondrial succinate/fumarate transporter resulted in higher relative mitochondrial levels of succinate and in substantial reductions of Cit2 expression in sdh2Δsfc1Δ and fum1Δsfc1Δ strains as compared with sdh2Δ and fum1Δ strains, suggesting that aberrant transport of succinate out of mitochondria mediated by Sfc1 is related to the increased expression of Cit2 in sdh2Δ and fum1Δ strains. A defect (rtg1Δ) in the yeast retrograde response pathway, which controls expression of several mitochondrial proteins and Cit2, eliminated expression of Cit2 and reduced expression of NAD-specific isocitrate dehydrogenase (Idh) and aconitase (Aco1) in parental, sdh2Δ, and fum1Δ strains. Concomitantly, co-disruption of the RTG1 gene reduced the cellular levels of succinate in the sdh2Δ and fum1Δ strains, of fumarate in the fum1Δ strain, and citrate in an idhΔ strain. Thus, the retrograde response is necessary for maintenance of normal flux through the TCA and glyoxylate cycles in the parental strain and for metabolite accumulation in TCA cycle mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号