首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific LC-MS/MS assay was developed for the automated determination of talinolol in human plasma, using on-line solid phase extraction system (prospekt 2) combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry. The method involved simple precipitation of plasma proteins with perchloric acid (contained propranolol) as the internal standard (IS) and injection of the supernatant onto a C8 End Capped (10 mmx2 mm) cartridge without any evaporation step. Using the back-flush mode, the analytes were transferred onto an analytical column (XTerra C18, 50 mmx4.6 mm) for chromatographic separation and mass spectrometry detection. One of the particularities of the assay is that the SPE cartridge is used as a column switching device and not as an SPE cartridge. Therefore, the same SPE cartridge could be used more than 28 times, significantly reducing the analysis cost. APCI ionization was selected to overcome any potential matrix suppression effects because the analyte and IS co-eluted. The mean precision and accuracy in the concentration range 2.5-200 ng/mL was found to be 103% and 7.4%, respectively. The data was assessed from QC samples during the validation phase of the assay. The lower limit of quantification was 2.5 ng/mL, using a 250 microL plasma aliquot. The LC-MS/MS method provided the requisite selectivity, sensitivity, robustness accuracy and precision to assess pharmacokinetics of the compound in several hundred human plasma samples.  相似文献   

2.
A liquid chromatography-mass spectrometry method is described for the determination of tetramethylpyrazine (TMP) and its active metabolite, 2-hydroxymethyl-3,5,6-trimethylpyrazine (HTMP) in dog plasma. This method involves a plasma clean-up step using protein precipitation procedure followed by LC separation and positive electrospray ionization mass spectrometry detection (ESI-MS). Chromatographic separation of the analytes was achieved on a C18 column using a mobile phase of methanol, water and acetic acid (50:50:0.6, v/v/v) at a flow rate of 1.0 ml/min. Selected ion monitoring (SIM) mode was used for analyte quantitation at m/z 137.2 for TMP, m/z 153.2 for HTMP and m/z 195.2 for caffeine. The linearity was obtained over the concentration ranges of 20-6000 ng/ml for TMP and 20-4000 ng/ml for HTMP and the lower limit of quantitation was 20 ng/ml for both analytes. For each level of QC samples, both inter- and intra-day precisions (R.S.D.) were 相似文献   

3.
This work presents a high-throughput selected reaction monitoring (SRM) LC-MS method for the determination of methylphenidate (MPH), a central nervous stimulant, and its de-esterified metabolite, ritalinic acid (RA) in rat plasma samples. A separation of these two compounds was achieved in 15 s by employing a 3.5-ml/min flow-rate, a porous monolithic column and a TurboIonSpray source compatible with relatively high flow-rates. In addition, a relatively fast autosampler and a new data acquisition system resulted in a time lag of less than 17 s between consecutive injections. Overall, 768 protein-precipitated rat plasma samples (eight 96-well plates) containing both MPH and RA were analyzed within 3 h and 45 min. The partial method validation described in this report included an assessment of linearity, intra and inter-assay precision and accuracy, and method robustness. Deuterated internal standards for the target compounds, d(3)-MPH and d(5)-RA, were employed. The calibration curves ranged from 0.1 to 50 ng/ml for MPH and from 0.5 to 50 ng/ml for RA. The limit of quantification (LOQ) for MPH and RA was 0.1 and 0.5 ng/ml, respectively. For both analytes, the intra- and inter-assay precision (relative standard deviation, % C.V.) and accuracy (relative error) did not exceed 15% for the quality control samples (QCs) QC1, QC2 or QC3 (0.3, 1.5 and 40 ng/ml for MPH and 0.15, 15 and 40 ng/ml for RA) for either analyte and did not exceed 20% at the lower limit of quantitation (LOQ) level. No carry-over from the autosampler was detected. The retention times remained constant throughout the experiment. Baseline resolution of MPH and RA was consistently observed throughout the plates analyzed. The described method demonstrates the feasibility for employing monolithic HPLC columns to effect rapid bioanalytical SRM LC-MS analysis of representative biological samples.  相似文献   

4.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for determination of ibutilide in human plasma. The analyte and internal standard sotalol were extracted from plasma samples by liquid-liquid extraction, and separated on a C(18) column, using acetonitrile-water-10% butylamine-10% acetic acid (80:20:0.07:0.06, v/v/v/v) as the mobile phase. Detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via TurboIonSpray ionization (ESI). Linear calibration curves were obtained in the concentration range of 20-10,000 pg/ml, with a lower limit of quantitation of 10 pg/ml. The intra- and inter-day precision values were below 8% and accuracy was within +/-3% at all three QC levels. The method was utilized to support clinical pharmacokinetic studies of ibutilide in healthy volunteers following intravenous administration.  相似文献   

5.
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.  相似文献   

6.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is described for quantitation of salbutamol in human urine using nadolol as the internal standard (I.S.). Urine samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Bond Elut-Certify cartridges. The HPLC column was an Agilent Zorbax SB-C(18) column. A mixture of 0.01 M ammonium formate buffer (pH 3.5)-acetonitrile (85:15, v/v) was used as the mobile phase. Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. Selected ion monitoring (SIM) mode was used to monitor m/z 166 for salbutamol and m/z 310 for I.S. Good linearity was obtained in the range of 10.0-2000.0 ng/ml. The limit of quantification was 10.0 ng/ml. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 7.3%. The accuracy as determined from QC samples was within +/-2.6%. The method was applied for determining excretion curves of salbutamol.  相似文献   

7.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

8.
A sensitive and high throughput off-line μElution 96-well solid-phase extraction (SPE) followed by strong cation exchange (SCX) liquid chromatography with tandem mass spectrometry (LC/MS/MS) quantification for determination of cefepime has been developed and validated in mouse plasma. Using the chemical analog, ceftazidime as an internal standard (IS), the linear range of the method for the determination of cefepime in mouse plasma was 4–2048 ng/mL with the lower limit of quantitation level (LLOQ) of 4 ng/mL. The inter- and intra-assay precision and accuracy of the method were below 9.05% and ranged from 95.6 to 113%, respectively, determined by quality control (QC) samples at five concentration levels including LLOQ. After μElution SPE, 71.1% of cefepime was recovered. The application of the validated assay for the determination of cefepime in mouse pharmacokinetics (PK) samples after intravenous (IV) and subcutaneous (SC) doses was demonstrated.  相似文献   

9.
The purpose of the study was to develop a gas chromatography-mass spectrometric (GC-MS) method for the identification and quantitation of Delta(9)-tetrahydrocannabinol (THC) in rabbit plasma. Two ionization techniques were utilized for GC-MS: electron impact ionization (EI) after i.v. administration and negative chemical ionization (NCI) after sublingual administration. THC was isolated from plasma by solid phase extraction and derivatized by either trimethylsilylation (EI) or trifuoroacetylation (NCI), with deuterated THC as an internal standard. The validity of analytical method was confirmed by investigating selectivity, limit of quantitation, linearity, accuracy, precision, recovery and stability of the analyte. The method proved to be selective, linear, accurate and precise over a range of 10-430 and 0.3-530 ng/ml of THC in plasma for EI and NCI, respectively. The extraction recovery was >81% for each concentration level studied, and the analyte was shown to be stable during storage and sample preparation. The method was applied successfully in analysing THC from rabbit plasma.  相似文献   

10.
Propofol (2,6-diisopropyl phenol) is widely used for the induction and maintenance of anesthesia. Analyses of its pharmacokinetics require simple and sensitive methods for quantitation of propofol in human plasma. Previously reported HPLC and GC methods are limited by cumbersome extraction steps. We describe a novel method that combines sample preparation by solid-phase extraction (SPE) with hydrophilic-lipophilic balance cartridges and analysis with a sensitive LC-APCI-triple quadrupole mass spectrometry (MS/MS) method for better quantitation. The absolute recovery of the analyte was greater than 96%. The limit of quantification for propofol in plasma at a signal-to-noise ratio of 10 was 5 ng/ml. The precision of the assay yielded coefficients of variation ranging from 2.9 to 5.3% and an accuracies of 99-105%. Our method advances the quantitative analysis of propofol in human plasma by combining simple, rapid and efficient SPE with specific and sensitive quantitation by HPLC with APCI-MS/MS detection.  相似文献   

11.
Astragaloside IV (AGS-IV) is an active constituent of Radix Astragali used in many Traditional Chinese Medicines. This paper describes a sensitive and specific assay for the quantitation of AGS-IV in rat plasma. After solid phase extraction (SPE), samples were analyzed by liquid chromatography electrospray ionization mass spectrometry using a reversed-phase C18 column. The assay was linear in the range 1-500 ng/ml with a limit of detection of 0.5 ng/ml. The recovery was 92.5% and within-day and between-day precision were 3.7-6.0 and 2.8-9.8%, respectively. The assay was applied to a pharmacokinetic study in rat after a single oral dose. The drug was rapidly absorbed and subsequently eliminated according to a biphasic concentration-time curve.  相似文献   

12.
As laboratories are called upon to develop novel, fast, and sensitive methods, here we present a completely automated method for the analysis of cocaine and its metabolites (benzoylecgonine, ecgonine methyl ester, ecgonine and cocaethylene) from whole blood. This method utilizes an online solid-phase extraction (SPE) with high performance liquid chromatographic separation and tandem mass spectrometric detection. Pretreatment of samples involve only protein precipitation and ultracentrifugation. An efficient online solid-phase extraction (SPE) procedure was developed using Hysphere MM anion sorbent. A gradient chromatography method with a Gemini C6-Phenyl (50mmx3.00mm i.d., 5microm) column was used for the complete separation of all components. Analysis was by positive ion mode electrospray ionization tandem mass spectrometry, using multiple reaction monitoring (MRM) to enhance the selectivity and sensitivity of the method. For the analysis, two MRM transitions are monitored for each analyte and one transition is monitored for each internal standard. With a 30-microL sample injection, linearity was analyte dependent but generally fell between 8 and 500ng/mL. The limits of detection (LODs) for the method ranged from 3 to 16ng/mL and the limits of quantitation (LOQs) ranged from 8 to 47ng/mL. The bias and precision were determined using a simple analysis of variance (ANOVA: single factor). The results demonstrate bias as <7%, and %precision as <9% for all components at each QC level.  相似文献   

13.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of cefdinir in human plasma. After a simple protein precipitation using trichloracetic acid, the post-treatment samples were applied to a prepacked RP18 Waters SymmetryShield column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of methanol-water-formic acid (25:75:0.075, v/v/v). The analyte and I.S. cefaclor were both detected by the use of selected reaction monitoring mode. The method was linear in the concentration range of 5-2,000 ng/ml. The lower limit of quantification was 5 ng/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 4.3%. The accuracy determined at three concentrations (36, 360 and 1,800 ng/ml for cefdinir) ranged from 99.6 to 106.7% in terms of recovery. The chromatographic run time for each plasma sample was less than 3 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefdinir capsule in 12 healthy volunteers.  相似文献   

14.
A sensitive and selective HPLC-solid-phase extraction procedure was developed for the determination of platelet-activating factor antagonist BN-50727 and its metabolites in human plasma. The procedure consisted of an automated solid-phase extraction of the drug and metabolites on disposable propylcarboxylic acid cartridges, followed by on-line chromatographic separation. The method was linear from 3.75 to 2400 ng/ml and the limit of quantitation for BN-50727 in plasma samples was 3.75 ng/ml. The within-run precision of the method, expressed as relative standard deviation, ranged from 2.1 to 8.1%. The accuracy, expressed as relative error, ranged from −3.5 to 4.0%. For the main metabolite, the O-demetthylated BN-50727 product, the method was linear from 7.5 to 2400 ng/ml and the limit of quantitation in plasma was 7.5 ng/ml. The within-run precision ranged from 2.1 to 11.0% and the accuracy from −5.3 to 1.1%. This paper describes the validation of the analytical methodology for the determination of BN-50727 in human plasma and also of its metabolites. The method has been used to follow the time course of BN-50727 and its metabolites in human plasma after administration of single and multiple doses.  相似文献   

15.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of lansoprazole in human plasma using omeprazole as the internal standard. The analyte and internal standard were extracted from the plasma samples by liquid-liquid extraction using diethyl-ether-dichloromethane (70:30; v/v) and chromatographed on a C(18) analytical column. The mobile phase consisted of acetonitrile-water (90:10; v/v)+10 mM formic acid. The method has a chromatographic total run time of 5 min and was linear within the range 2.5-2000 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by Multiple Reaction Monitoring (MRM). The intra- and inter-run precision, calculated from quality control (QC) samples, was less than 3.4%. The accuracy as determined from QC samples was less than 9%. The method herein described was employed in a bioequivalence study of two capsule formulations of lansoprazole.  相似文献   

16.
A method using high-performance liquid chromatography (HPLC) and solid-phase extraction (SPE) is described for the determination of ginsenoside Rg3 in human plasma. A 2.5-ml volume of plasma was mixed with 2.5 ml 60% methanol aqueous solution, and centrifuged at 1100 g for 10 min, the supernatant fluid was further purified by SPE with 200 mg/5 ml 40 μm octadecyl silica and separation was obtained using a reversed-phase column under isocratic conditions with ultraviolet absorbance detection. The intra- and inter-day precision, determined as relative standard deviations, were less than 5.0%, and method recovery was more than 97%. The lower limit of quantitation, based on standards with acceptable RSDs, was 2.5 ng/ml. No endogenous compounds were found to interfere with analyte. A good linear relationship with a regression coefficient of 0.9999 in the range of 2.5 to 200 ng/ml was observed. This method has been demonstrated to be suitable for pharmacokinetic studies in humans. Method development for determination of drug with low UV absorption by SPE and HPLC is also discussed.  相似文献   

17.
A selective, accurate, and reproducible LC-MS-MS assay was developed for the determination of the HIV protease inhibitor atazanavir (BMS-232632) in human plasma samples. The method involved automated solid-phase extraction of atazanavir and a stable isotope analog internal standard (I.S.) using Oasis HLB 10 mg 96-well SPE plates. A portion of the reconstituted sample residue was injected onto a C(18) HDO analytical column which was configured with a triple quad mass spectrometer for analyte determination by positive ion electrospray. The assay was linear from 1.00 to 1,000 ng/ml with a lower limit of quantitation of 1.00 ng/ml. The inter- and intra-day coefficients of variation (C.V.) for the assay were <4%, and the accuracy was 99-102%. Atazanavir was stable in human plasma for at least 109 h at room temperature and for at least 1 year at -20 degrees C.  相似文献   

18.
During method development in support of non-clinical studies in animal models, BMS-186716 was found to be extremely unstable in blood and plasma. Stabilization of the compound was achieved by reacting the compound with methyl acrylate (MA) in blood, from which the plasma was then prepared. While the resulting BMS-186716-MA adduct was found to be stable in dog plasma, and hence it was used as the basis for the method developed for analysis of dog plasma samples, the BMS-186716-MA adduct was found to be unstable in rat plasma as it was readily hydrolyzed to BMS-186716-acrylic acid (AA) by native esterases found in rat plasma. Although the finding of the instability of BMS-186716-MA in rat plasma was not the result of prospective planning, we were able to successfully develop a quantitative bioanalytical method using BMS-186716-AA as the analyte instead of the originally planned BMS-186716-MA analyte. The standard and quality-control (QC) samples were prepared by spiking blank plasma with BMS-186716-MA, and then allowing them to stand at room temperature for 1 h to convert BMS-186716-MA to BMS-186716-AA. After adding the internal standard BMS-188035-AA, each sample was acidified with HCl and then extracted with methyl tert.-butyl ether. The reconstituted extract was injected into a HPLC-electrospray ionization mass spectrometric system for detection by positive ion electrospray ionization. A lower limit of quantitation (LLQ) of 5 ng/ml was achieved, using 0.1 ml plasma and a standard curve range of 5–5000 ng/ml.  相似文献   

19.
Concerns in pre-analytical handling of urine samples are discussed using a new KDR kinase inhibitor, 3-[5-(4-methanesulfonyl-piperazin-1-ylmethyl)-1H-indol-2-yl]-1H-quinolin-2-one (compound A), as an example of a case where high light sensitivity and low analyte recovery (high affinity for container surface) were found. The absence of these problems in plasma samples may be a result of the plasma protein content. Low recovery of the analyte from urine can be remedied by either changing the container or by using additives, such as bovine serum albumin (BSA) or non-ionic surfactant Tween-20. In the case of compound A, changing containers (polypropylene versus glass vial) or addition of BSA did bring analyte recovery up to 80%. However, the addition of 0.2% Tween-20 into urine quality controls (QCs) gave more than 95% analyte recovery, indicating effective reduction of analyte loss to the surface of containers. The urine assay using mixed-mode SPE and LC-MS/MS was not affected significantly by introducing Tween-20 into the samples. The mean SPE extraction recovery was 68.4% and matrix suppression of ionization on MS was less than 8% at all analyte concentrations. The linear range of the calibration curve was 0.5-400 ng/mL on PE Sciex API 3000 LC-MS/MS system. The assay intraday accuracy and precision were 92.1-104.8% and <4.2% (%CV), respectively. Urine QC samples, containing 0.2% Tween-20, gave excellent recovery after three cycles of freeze and thaw. Since analyte loss to its urine container surface is not unique to compound A (M. Schwartz, W. Kline, B. Matuszewski, Anal. Chim. Acta 352 (1997) 299-307; A.L. Fisher, E. DePuy, T. Shih, R. Stearns, Y. Lee, K. Gottesdiener, S. Flattery, M. De Smet, B. Keymeulen, D.G. Musson, J. Pharm. Biomed. Anal. 26 (2001) 739-752), we suggest an evaluation of the potential problem in the early stages of urine assay development to ensure reliable quantitation of analytes. The addition of Tween-20 can serve as a useful analytical tool to other analytes with similar situations.  相似文献   

20.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of Lisinopril in human plasma using Enalaprilat as internal standard. The analyte and internal standard were extracted from the plasma samples by solid-phase extraction using Waters HLB Oasis SPE cartridges and chromatographed on a C8 analytical column. The mobile phase consisted of acetonitrile/water (60:40, v/v) + 20 mM acetic acid + 4.3 mM of triethylamine. The method had a chromatographic total run-time of 6.5 min and was linear within the range 2.00-200 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM). The precision (CV%) and accuracy, calculated from limit of quantification (LOQ) samples (n = 8), were 8.9 and 98.9%, respectively. The method herein described was employed in a bioequivalence study of two tablet formulations of Lisinopril 20mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号