共查询到20条相似文献,搜索用时 0 毫秒
1.
On rat hippocampal slices using a standard patch-clamp technique in the whole-cell configuration, we studied the effects of long-term (40 to 60 min) hypoxia/hypoglycemia (HH) on excitatory postsynaptic currents (EPSC) evoked by stimulation of Schaffer collaterals in the cells of the CA1 zone. In addition to the earlier described effect of an immediate drop in the EPSC amplitude, a significant transient increase in its amplitude 30-50 min after the beginning of HH was observed. A pharmacologically isolated NMDA component of excitatory synaptic events underwent similar changes: 30-50 min after the blockade of NMDA receptor-mediated current, a fast recovery of its amplitude to the control (or even higher) values occurred. A blocker of NMDA/glutamate (Glu) receptors, D-aminophosphonovaleric acid (D-APV), and a competitive nonspecific antagonist of metabotropic Glu receptors, (RS)--methyl-4-carboxyphenylglycine – (RS)-MCPG – did not influence the HH-induced initial suppression of synaptic transmission but completely eliminated its delayed recovery. Our findings allow us to suppose that NMDA receptors, as well as metabotropic Glu receptors, play important roles in the cascade of biochemical reactions resulting in death of hippocampal pyramidal cells in the course of and after long-term ischemia in vivo. 相似文献
2.
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity. 相似文献
3.
The effect of reactive oxygen species generated by the interaction of xanthine and xanthine oxidase on synaptic transmission was examined at the squid giant synapse and the lobster neuromuscular junction. Exposure of these synaptic regions to xanthine/xanthine oxidase produced a significant depression in evoked release, with no change in either resting membrane properties or in the action potential. Addition of catalase to the xanthine/xanthine oxidase-containing media partially blocked the synaptic depression, indicating that H2 O 2 contributes to the synaptic changes induced by exposure to xanthine/xanthine oxidase. H2 O 2 applied directly to the perfusing media also produced a decrease in synaptic efficacy. The results demonstrate that reactive oxygen species, in general, depress evoked synaptic transmission. 相似文献
4.
《Free radical research》2013,47(5-6):385-393
The effect of reactive oxygen species generated by the interaction of xanthine and xanthine oxidase on synaptic transmission was examined at the squid giant synapse and the lobster neuromuscular junction. Exposure of these synaptic regions to xanthine/xanthine oxidase produced a significant depression in evoked release, with no change in either resting membrane properties or in the action potential. Addition of catalase to the xanthine/xanthine oxidase-containing media partially blocked the synaptic depression, indicating that H2 O 2 contributes to the synaptic changes induced by exposure to xanthine/xanthine oxidase. H2 O 2 applied directly to the perfusing media also produced a decrease in synaptic efficacy. The results demonstrate that reactive oxygen species, in general, depress evoked synaptic transmission. 相似文献
5.
Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts. 相似文献
6.
In this communication, the published data and some results of studies of the authors dealing with the problem of short-term
plasticity of GABA-ergic synaptic transmission in cerebral structures are described.
Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 294–307, May–June, 2005. 相似文献
7.
Roger J. Colbran 《The Journal of biological chemistry》2015,290(48):28594-28595
The human brain contains ∼86 billion neurons, which are precisely organized in specific brain regions and nuclei. High fidelity synaptic communication between subsets of neurons in specific circuits is required for most human behaviors, and is often disrupted in neuropsychiatric disorders. The presynaptic axon terminals of one neuron release neurotransmitters that activate receptors on multiple postsynaptic neuron targets to induce electrical and chemical responses. Typically, postsynaptic neurons integrate signals from multiple presynaptic neurons at thousands of synaptic inputs to control downstream communication to the next neuron in the circuit. Importantly, the strength (or efficiency) of signal transmission at each synapse can be modulated on time scales ranging up to the lifetime of the organism. This “synaptic plasticity” leads to changes in overall neuronal circuit activity, resulting in behavioral modifications. This series of minireviews will focus on recent advances in our understanding of the molecular and cellular mechanisms that control synaptic plasticity. 相似文献
8.
9.
The author briefly summarizes his own experimental data obtained earlier and reports evidence in favor of the contribution of postsynaptic AMPA receptor channels to the mechanisms underlying modifications of excitatory synaptic transmission in the CNS (in particular, in neocortical and hippocampal neuronal circuits). 相似文献
10.
11.
It has been suggested that information in the brain is encoded in temporal spike patterns which are decoded by a combination of time delays and coincidence detection. Here, we show how a multi-compartmental model of a cerebellar Purkinje cell can learn to recognise temporal parallel fibre activity patterns by adapting latencies of calcium responses after activation of metabotropic glutamate receptors (mGluRs). In each compartment of our model, the mGluR signalling cascade is represented by a set of differential equations that reflect the underlying biochemistry. Phosphorylation of the mGluRs changes the concentration of receptors which are available for activation by glutamate and thereby adjusts the time delay between mGluR stimulation and voltage response. The adaptation of a synaptic delay as opposed to a weight represents a novel non-Hebbian learning mechanism that can also implement the adaptive timing of the classically conditioned eye-blink response. 相似文献
12.
13.
A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory 总被引:5,自引:0,他引:5
Mothet JP Rouaud E Sinet PM Potier B Jouvenceau A Dutar P Videau C Epelbaum J Billard JM 《Aging cell》2006,5(3):267-274
Age-associated deficits in learning and memory are closely correlated with impairments of synaptic plasticity. Analysis of N-methyl-D-aspartate receptor (NMDAr)-dependent long-term potentiation (LTP) in CA1 hippocampal slices indicates that the glial-derived neuromodulator D-serine is required for the induction of synaptic plasticity. During aging, the content of D-serine and the expression of its synthesizing enzyme serine racemase are significantly decreased in the hippocampus. Impaired LTP and NMDAr-mediated synaptic potentials in old rats are rescued by exogenous D-serine. These results highlight the critical role of glial cells and presumably astrocytes, through the availability of D-serine, in the deficits of synaptic mechanisms of learning and memory that occur in the course of aging. 相似文献
14.
15.
Delany Torres-Salazar Jie Jiang Christopher B. Divito Jennie Garcia-Olivares Susan G. Amara 《The Journal of biological chemistry》2015,290(38):22977-22990
In the mammalian central nervous system, excitatory amino acid transporters (EAATs) are responsible for the clearance of glutamate after synaptic release. This energetically demanding activity is crucial for precise neuronal communication and for maintaining extracellular glutamate concentrations below neurotoxic levels. In addition to their ability to recapture glutamate from the extracellular space, EAATs exhibit a sodium- and glutamate-gated anion conductance. Here we show that substitution of a conserved positively charged residue (Arg-388, hEAAT1) in transmembrane domain 7 with a negatively charged amino acid eliminates the ability of glutamate to further activate the anion conductance. When expressed in oocytes, R388D or R388E mutants show large anion currents that display no further increase in amplitude after application of saturating concentrations of Na+ and glutamate. They also show a substantially reduced transport activity. The mutant transporters appear to exist preferentially in a sodium- and glutamate-independent constitutive open channel state that rarely transitions to complete the transport cycle. In addition, the accessibility of cytoplasmic residues to membrane-permeant modifying reagents supports the idea that this substrate-independent open state correlates with an intermediate outward facing conformation of the transporter. Our data provide additional insights into the mechanism by which substrates gate the anion conductance in EAATs and suggest that in EAAT1, Arg-388 is a critical element for the structural coupling between the substrate translocation and the gating mechanisms of the EAAT-associated anion channel. 相似文献
16.
《Cell reports》2023,42(6):112541
- Download : Download high-res image (203KB)
- Download : Download full-size image
17.
Sang Beom Jun Verginia Cuzon Carlson Stephen Ikeda David Lovinger 《Journal of visualized experiments : JoVE》2011,(51)
Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches. 相似文献
18.
Low-frequency tetanic stimulation (2 sec-1, 5 min) of Schaffer collaterals (SchC) in superfused slices of the dorsal hippocampus of 12- to 15-day-old rats was demonstrated to evoke homosynaptic long-lasting depression (LLD) of synaptic transmission. The same procedure applied to hippocampal slices of mature (8-week-old or older) rats failed to elicit LLD. Low-frequency tetanic stimulation of the alveus in hippocampal slices, applied under conditions of intensified NMDA glutamate receptor functioning, led to the development of heterosynaptic LLD of synaptic transmission in the SchC–dendrites of the CA1 pyramidal neurons system. Both LLD cases were either absent or weakened when hippocampal slices were treated with a competitive blocker of the NMDA glutamate receptors, D-2-amino-5-phosphonovalerate (50 M). Morphine hydrochloride (10 M), as well as inhibitors of calmodulin and calcineurin (trifluoroperasine and cyclosporin A in concentrations of 1 and 50 M, respectively), interfered with induction of LLD or decreased its intensity. A blocker of the L-type voltage-dependent Ca2+ channels, nifedipine (10 M), did not influence homosynaptic LLD, but decreased heterosynaptic depression. Both types of depression of synaptic transmission were facilitated upon application of substances possessing a nootropic activity, 1 mM pyracetam or 5 M carbacetam. A blocker of NO synthase, N-nitro-L-arginine (10 M) did not alter either type of LLD. When hippocampal slices were influenced with a blocker of the A1 adenosine receptors, 1,3-dipropyl-8-phenylxanthine (1 M, 15 min), both LLD forms were intensified, and the development of homosynaptic LLD of synaptic transmission became possible in hippocampal slices of mature rats. When hippocampal slices were treated with an inhibitor of protein kinase C, polymyxin B (50 M, 15 min), intensification of LLD and, in particular, the development of homosynaptic LLD of synaptic transmission were observed. When an inhibitor of phospholipase A2, mepacrine (25 M, 15 min), was applied to hippocampal slices, both forms of LLD of synaptic transmission were significantly suppressed. 相似文献
19.
20.
In experiments on neuromuscular junctions in the frog m. thoraco-cutaneous, we studied changes in the transmitter release and shape of the nerve ending (NE) response related to high-frequency (10 or 50 sec-1) rhythmic stimulation of the motor nerve; an extracellular recording technique was used. At a low extracellular Ca2+ concentration, rhythmic stimulation resulted in a gradual increase in the quantum content of end-plate currents, i.e., in facilitation. Simultaneously, the third (positive) phase of the NE response became smaller, the amplitude of the second (negative) phase of this response also decreased, while the duration of this phase increased. Modifications of the NE response upon stimulation with a 10 sec-1 frequency were more clearly expressed than those at 50 sec-1 stimulation. In Ca2+-free solutions, rhythmic stimulation was accompanied by analogous modifications of the shape of NE responses, and the dynamics of these changes were the same at both the above-mentioned stimulation frequencies. When 0.5-1.0 mM tetraethylammonium was applied, 10 sec-1 stimulation was accompanied by no facilitation of transmitter release; at 50 sec-1 stimulation, this phenomenon was observed but was weaker than in the control, and the shape of NE responses underwent only mild changes. Simulation of electrogenesis in the studied structure showed that modifications of the NE response shape related to rhythmic 10 sec-1 stimulation can develop in the case of a gradual decrease in the voltage-dependent potassium membrane conductivity, which results in prolongation of the de- and repolarization phases of action potentials and increases in the amplitude and duration of the inward calcium current. At higher stimulation frequencies (50 sec-1), this mechanism is accompanied by a gradual increase in the Ca2+-dependent potassium conductivity, due to an increase in the intracellular Ca2+ concentration. These data allow us to conclude that the intensity of facilitation of transmitter release from the frog motor NE is related not only to accumulation of residual calcium, but also to changes of presynaptic calcium current due to modification of the kinetics of functioning of the potassium channels. 相似文献