首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The internal transcribed spacer (ITS) 1 and 2, the 5.8S rRNA gene, and adjacent 18S rRNA and 25S rRNA coding regions of two Cucurbitaceae (Cucurbita pepo, zucchini, ITS 1: 187 bp, and ITS 2: 252 bp in length, andCucumis sativus, cucumber, ITS 1: 229 bp, and ITS 2: 245 bp in length) have been sequenced. The evolutionary pattern shown by the ITSs of these plants is different from that found in vertebrates. Deletions, insertions, and base substitutions have occurred in both spacers; however, it is obvious that some selection pressure is responsible for the preservation of stem-loop structures. The dissimilarity of the 5 region of ITS 2 found in higher plants has consequences for proposed models on U3 snRNA-ITS 2 interaction in higher eukaryotes.The two investigated Cucurbitaceae species show a G+C content of ITS 1 that nearly equals that of ITS 2. An analysis of the ITS sequences reveals that in 19 out of 20 organisms published, the G+C content of ITS 1 nearly equals that of ITS 2, although it ranges from 20% to 90% in different organisms (GC balance). Moreover, the balanced G+C content of the ITSs in a given species seems to be similar to that of so-called expansion segments (ESs) in the 25/28S rRNA coding region. Thus, ITSs show a phenomenon called molecular coevolution with respect to each other and to the ESs. In the ITSs of Cucurbitaceae the balanced G+C composition is at least partly achieved by C to T transitions, via deamination of 5-methylcytosine. Other mutational events must be taken into account. The appearance of this phenomenon is discussed in terms of functional constraints linked to the structures of these spacers.  相似文献   

2.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

3.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

4.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

5.
6.
The DNA segment situated between the 16S and 23S rRNA genes belonging to the plastid genome of the brown alga Pylaiella littoralis (L.) Kjellm. has been sequenced. This small region (322 bp) contains two unsplit tRNA genes separated by 3 bp. A comparison with similar regions from different plants shows that this region has evolved in two different ways according to the place of plants in evolution. In the primitive group, this region is reduced in size when compared to prokaryotes. In the other groups, it is considerably enlarged by insertion of repetitive sequences, open reading frames and introns.  相似文献   

7.
Molecular organization and nucleotide sequences of the 5S rRNA gene and NTS were investigated in freshwater fish, bitterlings (Acheilognathinae), including 10 species/subspecies of four genera, Acheilognathus, Pseudoperilampus, Rhodeus, and Tanakia, to understand the evolutionary trait of 5S rDNA arrays. Southern hybridization analysis revealed a general trend with tandem repeats of 5S rDNA in all the examined bitterlings. Sequence analysis demonstrated a conserved 120 bp sequence of the 5S rRNA gene and a short NTS of 56–67 bp with two distinct portions, a conserved (5′-flanking portion; at positions −1 to −38) and a variable part (3′-flanking portion), in 6 of 10 species/subspecies examined. The conserved NTS region was most likely an external promoter so far observed in various vertebrates, whereas the variable NTS region could be divided into two types due to its nucleotide polymorphisms. Molecular phylogeny using the 5S rRNA gene and NTS sequences suggested the occurrence of 5S rDNA duplication before speciation and a concerted evolution for the gene and conserved NTS regions, but a birth-and-death process to maintain the variable NTS region. Thus, the 5S rDNA in the examined bitterlings might have evolved under a mixed process of evolution.  相似文献   

8.
The rDNA of eukaryotic organisms is transcribed as the 40S-45S rRNA precursor, and this precursor contains the following segments: 5' - ETS - 18S rRNA - ITS 1 - 5.8S rRNA - ITS 2 - 28S rRNA - 3'. In amphibians, the nucleotide sequences of the rRNA precursor have been completely determined in only two species of Xenopus. In the other amphibian species investigated so far, only the short nucleotide sequences of some rDNA fragments have been reported. We obtained a genomic clone containing the rDNA precursor from the Japanese pond frog Rana nigromaculata and analyzed its nucleotide sequence. The cloned genomic fragment was 4,806 bp long and included the 3'-terminus of 18S rRNA, ITS 1, 5.8S rRNA, ITS 2, and a long portion of 28S rRNA. A comparison of nucleotide sequences among Rana, the two species of Xenopus, and human revealed the following: (1) The 3'-terminus of 18S rRNA and the complete 5.8S rRNA were highly conserved among these four taxa. (2) The regions corresponding to the stem and loop of the secondary structure in 28S rRNA were conserved between Xenopus and Rana, but the rate of substitutions in the loop was higher than that in the stem. Many of the human loop regions had large insertions not seen in amphibians. (3) Two ITS regions had highly diverged sequences that made it difficult to compare the sequences not only between human and frogs, but also between Xenopus and Rana. (4) The short tracts in the ITS regions were strictly conserved between the two Xenopus species, and there was a corresponding sequence for Rana. Our data on the nucleotide sequence of the rRNA precursor from the Japanese pond frog Rana nigromaculata were used to examine the potential usefulness of the rRNA genes and ITS regions for evolutionary studies on frogs, because the rRNA precursor contains both highly conserved regions and rapidly evolving regions.  相似文献   

9.
The nucleotide sequences of the plastid 16S rDNA of the multicellular red alga Antithamnion sp. and the 16S rDNA/23S rDNA intergenic spacers of the plastid DNAs of the unicellular red alga Cyanidium caldarium and of Antithamnion sp. were determined. Sequence comparisons support the idea of a polyphyletic origin of the red algal and the higher-plant chloroplasts. Both spacer regions include the unsplit tRNAIle (GAU) and tRNAAla (UGC) genes and so the plastids of both algae form a homogeneous group with those of chromophytic algae and Cyanophora paradoxa characterized by small-sized rDNA spacers in contrast to green algae and higher plants. Nevertheless, remarkable sequence differences within the rRNA and the tRNA genes give the plastids of Cyanidium caldarium a rather isolated position.  相似文献   

10.

Background

The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat.

Results

Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70–80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors.

Conclusion

A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
  相似文献   

11.
12.
Summary DNA sequence analysis and the localization of the 5 and 3 termini by S1 mapping have shown that the mitochondrial (mt) small subunit rRNA coding region fromPodospora anserina is 1980 bp in length. The analogous coding region for mt rRNA is 1962 bp in maize, 1686 bp inSaccharomyces cerevisiae, and 956 bp in mammals, whereas its counterpart inEscherichia coli is 1542 bp. TheP. anserina mt 16S-like rRNA is 400 bases longer than that fromE. coli, but can be folded into a similar secondary structure. The additional bases appear to be clustered at specific locations, including extensions at the 5 and 3 termini. Comparison with secondary structure diagrams of 16S-like RNAs from several organisms allowed us to specify highly conserved and variable regions of this gene. Phylogenetic tree construction indicated that this gene is grouped with other mitochondrial genes, but most closely, as expected, with the fungal mitochondrial genes.  相似文献   

13.
14.
E Roux  L Graf    E Stutz 《Nucleic acids research》1983,11(7):1957-1968
An extra 16S rRNA gene (s-16S rDNA) from the Euglena gracilis chloroplast genome and several hundred positions of its flanking regions have been sequenced. The structural part has 1486 positions and is to 98% homologous in its sequence with the 16S rRNA gene in functional chloroplast rRNA operons. Sequences of about 200 positions upstream and 15 positions downstream of the structural part of the s-16S rRNA gene region are highly homologous with corresponding parts in the functional operon. Neither tRNA genes (A1a, I1e) nor parts of the 23S and 5S rRNA genes are found within 557 positions after the 3' end of the s-16S rRNA gene, i.e., the 330 bp homology, observed in electron microscopic studies of heteroduplexes (4), between the s-16S rDNA downstream region and the 6.2 kb repeated segment containing the functional rRNA operon, must be due to a DNA stretch in the interoperon spacer. A structural model of the "truncated rRNA operon" is presented. Results from S-1 endonuclease analysis suggest that the s-16S rDNA region is probably not transcribed into stable s-16S rRNA.  相似文献   

15.
16.
The sequence of the ribosomal spacer region of soybean chloroplast DNA including the 3 end of the 16S rRNA gene, the tRNAAla and tRNAIle genes (but not their introns), the three intergenic regions and the 5 end of the 23S rRNA gene, has been determined. This sequence has been compared to corresponding regions of other angiosperm chloroplast DNAs. Secondary structure models are proposed for the entirety of the intergenic regions a, b and c and for the flanking rRNA regions. A model for a common secondary structure of the ribosomal spacer intergenic regions from chloroplasts of higher plants is proposed, which is supported by comparative evidence.  相似文献   

17.
The structure and organization of the 5S ribosomal DNA units of the silver fir, Abies alba Mill., as well as their position in the chromosome complement were investigated. PCR amplification of the gene and nontranscribed spacer region, sequence analysis and Southern hybridization, using a homologous probe, detected DNA sequences of approximately 550 bp and 700 bp. Sequence analysis of the spacers revealed that the difference in length between the sequences occurred in the middle spacer region as a result of the amplification of a 75-bp sequence of the short unit class, which is organized in four 54- to 68-bp tandem repeats in the long spacer unit. The 5S rDNA transcribed region is 120 bp long and shows high sequence similarity with other gymnosperm species. The comparative analysis of 5 and 3 flanking sequences of 5S rRNA genes of silver fir and other gymnosperms indicates that A. alba spacer units have the same rate of evolution and are more closely related to Larix and Pseudotsuga than to Pinus and Picea. Southern hybridization and fluorescence in situ hybridization of metaphase chromosomes of A. alba suggest that the short and long spacer units are organized as separate tandem arrays at two chromosomal loci on chromosomes V and XI.  相似文献   

18.
A digoxigenin-labelled 5S rDNA probe (pTa-794) and a rhodamine-labelled 18S-5.8S-25S rDNA probe (pTa71) were used for double-target in-situ hybridization to root-tip metaphase, prophase and interphase chromosomes of cultivated beet,Beta vulgaris L. After in-situ hybridization with the 18S-5.8S-25S rDNA probe, one major pair of sites was detected which corresponded to the secondary constriction at the end of the short arm of chromosome 1. The two rDNA chromosomes were often associated and the loci only contracted in late metaphase. In the majority of the metaphase plates analyzed, we found a single additional minor hybridization site with pTa71. One pair of 5S rRNA gene clusters was localized near the centromere on the short arm of one of the three largest chromosomes which does not carry the 18S-5.8S-25S genes. Because of the difficulties in distinguishing the very similarly-sizedB. vulgaris chromosomes in metaphase preparations, the 5S and the 18S-5.8S-25S rRNA genes can be used as markers for chromosome identification. TwoXbaI fragments (pXV1 and pXV2), comprising the 5S ribosomal RNA gene and the adjacent intergenic spacer, were isolated. The two 5S rDNA repeats were 349 bp and 351 bp long, showing considerable sequence variation in the intergenic spacer. The use of fluorescent in-situ hybridization, complemented by molecular data, for gene mapping and for integrating genetic and physical maps of beet species is discussed.  相似文献   

19.
20.
Summary DNA segments carrying rRNA genes of Mycoplasma capricolum have been cloned and characterized by restriction endonuclease mapping, DNA-RNA hybridization and nucleotide sequencing. The M. capricolum genome has two sets of rRNA gene clusters, where the arrangement is in the order of (5)16S-23S-5S(3). The spacer region between 16S and 23S rDNA is extremely rich in AT and does not carry any tRNA genes. Present address: Division of Hematology and Immunology of Internal Medicine, Kanazawa Medical University, Uchinada-Cho, Kahoku-Gun Ishikawa Pref. 920-02, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号