首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AU-rich elements (ARE) in the 3' untranslated region of many highly labile mRNAs for proto-oncogenes, lymphokines, and cytokines can act as an RNA-destabilizing element. The absence of a clear understanding of the key sequence and structural features of the ARE that are required for its destabilizing function has precluded the further elucidation of its mode of action and the basis of its specificity. Combining extensive mutagenesis of the c-fos ARE with in vivo analysis of mRNA stability, we were able to identify mutations that exhibited kinetic phenotypes consistent with the biphasic decay characteristic of a two-step mechanism: accelerated poly(A) shortening and subsequent decay of the transcribed portion of the mRNA. These mutations, which affected either an individual step or both steps, all changed the mRNA stability. Our experiments further revealed the existence of two structurally distinct and functionally interdependent domains that constitute the c-fos ARE. Domain I, which is located within the 5' 49-nucleotide segment of the ARE and contains the three AUUUA motifs, can function as an RNA destabilizer by itself. It forms the essential core unit necessary for the ARE-destabilizing function. Domain II is a 20-nucleotide U-rich sequence which is located within the 3' part of the c-fos ARE. Although it alone can not act as an RNA destabilizer, this domain serves two critical roles: (i) its presence enhances the destabilizing ability of domain I by accelerating the deadenylation step, and (ii) it has a novel capacity of buffering decay-impeding effects exerted by mutations introduced within domain I. A model is proposed to explain how these critical structural features may be involved in the c-fos ARE-directed mRNA decay pathway. These findings have important implications for furthering our understanding of the molecular basis of differential mRNA decay mediated by different AREs.  相似文献   

2.
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process.  相似文献   

3.
Human RNA-binding protein HuR, a nucleocytoplasmic shuttling protein, is a ubiquitously expressed member of the family of Hu proteins, which consist of two N-terminal RNA recognition motifs (RRM1 and RRM2), a hinge region, and a C-terminal RRM (RRM3). Although in vitro experiments showed indiscriminate binding of Hu proteins synthesized in bacterial systems to many different AU-rich elements (AREs), in vivo studies have pointed to a cytoplasmic role for HuR protein in antagonizing the rapid decay of some specific ARE-containing mRNAs, depending on physiological situations. By ectopically overexpressing HuR and its mutant derivatives in NIH 3T3 cells to mimic HuR upregulation of specific ARE-containing mRNAs in other systems, we have examined the in vivo ARE-binding specificity of HuR and dissected its functionally critical domains. We show that in NIH 3T3 cells, HuR stabilizes reporter messages containing only the c-fos ARE and not other AREs. Two distinct binding sites were identified within the c-fos ARE, the 5' AUUUA-containing domain and the 3' U-stretch-containing domain. These actions of HuR are markedly different from those of another ARE-binding protein, hnRNP D (also termed AUF1), which in vivo recognizes AUUUA repeats found in cytokine AREs and can exert both stabilizing and destabilizing effects. Further experiments showed that any combination of two of the three RRM domains of HuR is sufficient for strong binding to the c-fos ARE in vitro and to exert an RNA stabilization effect in vivo comparable to that of intact HuR and that the hinge region containing nucleocytoplasmic shuttling signals is dispensable for the stabilization effect of HuR. Our data suggest that the ARE-binding specificity of HuR in vivo is modulated to interact only with and thus regulate specific AREs in a cell type- and physiological state-dependent manner.  相似文献   

4.
AU-rich elements (AREs) control the expression of numerous genes by accelerating the decay of their mRNAs. Rapid decay and deadenylation of beta-globin mRNA containing AU-rich 3' untranslated regions of the chemoattractant cytokine interleukin-8 (IL-8) are strongly attenuated by activating the p38 mitogen-activated protein (MAP) kinase/MAP kinase-activated protein kinase 2 (MK2) pathway. Further evidence for a crucial role of the poly(A) tail is provided by the loss of destabilization and kinase-induced stabilization in ARE RNAs expressed as nonadenylated forms by introducing a histone stem-loop sequence. The minimal regulatory element in the IL-8 mRNA is located in a 60-nucleotide evolutionarily conserved sequence with a structurally and functionally bipartite character: a core domain with four AUUUA motifs and limited destabilizing function on its own and an auxiliary domain that markedly enhances destabilization exerted by the core domain and thus is essential for the rapid removal of RNA targets. A similar bipartite structure and function are observed for the granulocyte-macrophage colony-stimulating factor (GM-CSF) ARE. Stabilization in response to p38/MK2 activation is seen with the core domain alone and also after mutation of the AUUUA motifs in the complete IL-8 ARE. Stabilization by ARE binding protein HuR requires different sequence elements. Binding but no stabilization is observed with the IL-8 ARE. Responsiveness to HuR is gained by exchanging the auxiliary domain of the IL-8 ARE with that of GM-CSF or with a domain of the c-fos ARE, which results in even stronger responsiveness. These results show that distinct ARE domains differ in function with regard to destabilization, stabilization by p38/MK2 activation, and stabilization by HuR.  相似文献   

5.
An important emerging theme is that heterogeneous nuclear ribonucleoproteins (hnRNPs) not only function in the nucleus but also control the fates of mRNAs in the cytoplasm. Here, we show that hnRNP D plays a versatile role in cytoplasmic mRNA turnover by functioning as a negative regulator in an isoform-specific and cell-type-dependent manner. We found that hnRNP D discriminates among the three classes of AU-rich elements (AREs), most effectively blocking rapid decay directed by class II AREs found in mRNAs encoding cytokines. Our experiments identified the overlapping AUUUA motifs, one critical characteristic of class II AREs, to be the key feature recognized in vivo by hnRNP D for its negative effect on ARE-mediated mRNA decay. The four hnRNP D isoforms, while differing in their ability to block decay of ARE-containing mRNAs, all potently inhibited mRNA decay directed by another mRNA cis element that shares no sequence similarity with AREs, the purine-rich c-fos protein-coding region determinant of instability. Further experiments indicated that different mechanisms underlie the inhibitory effect of hnRNP D on the two distinct mRNA decay pathways. Our study identifies a potential mechanism by which cytoplasmic mRNA turnover can be differentially and selectively regulated by hnRNP D isoforms in mammalian cells. Our results support the notion that hnRNP D serves as a key factor broadly involved in general mRNA decay.  相似文献   

6.
7.
Inherently unstable mRNAs contain AU-rich elements (AREs) in their 3' untranslated regions that act as mRNA stability determinants by interacting with ARE binding proteins (ARE-BPs). The mechanisms underlying the function of ARE and ARE-BP interactions in promoting mRNA decay are not fully understood. Here, we demonstrate that KSRP, a KH domain-containing ARE-BP, is an essential factor for ARE-directed mRNA decay. Some of the KH motifs (KHs) of KSRP directly mediate RNA binding, mRNA decay, and interactions with the exosome and poly(A) ribonuclease (PARN). The ability of KHs to promote mRNA decay correlates with their ability to bind the ARE and associate with RNA-degrading enzymes. Thus, KHs promote rapid mRNA decay by recruiting degradation machinery to ARE-containing mRNAs.  相似文献   

8.
An AU-rich element (ARE) consisting of repeated canonical AUUUA motifs confers rapid degradation to many cytokine mRNAs when present in the 3' untranslated region. Destabilization of mRNAs with AREs (ARE-mRNAs) is consistent with the interaction of ARE-binding proteins such as tristetraprolin and the four AUF1 isoforms. However, the association of the AUF1-mRNA interaction with decreased ARE-mRNA stability is correlative and has not been directly tested. We therefore determined whether overexpression of AUF1 isoforms promotes ARE-mRNA destabilization and whether AUF1 isoforms are limiting components for ARE-mRNA decay. We show that the p37 AUF1 isoform and, to a lesser extent, the p40 isoform possess ARE-mRNA-destabilizing activity when overexpressed. Surprisingly, overexpressed p37 AUF1 also destabilized reporter mRNAs containing a noncanonical but AU-rich 3' untranslated region. Since overexpressed p37 AUF1 could interact in vivo with the AU-rich reporter mRNA, AUF1 may be involved in rapid turnover of mRNAs that lack canonical AREs. Moreover, overexpression of p37 AUF1 restored the ability of cells to rapidly degrade ARE-mRNAs when that ability was saturated and inhibited by overexpression of ARE-mRNAs. Finally, activation of ARE-mRNA decay often involves a translation-dependent step, which was eliminated by overexpression of p37 AUF1. These data indicate that the p37 AUF1 isoform and, to some extent, the p40 isoform are limiting factors that facilitate rapid decay of AU-rich mRNAs.  相似文献   

9.
AU-rich elements (AREs) in the 3' untranslated regions of several cytokine and oncogene mRNAs have been shown to function as signals for rapid mRNA degradation, and it is assumed that the many other cytokine and oncogene mRNAs that contain AU-rich sequences in the 3' untranslated region are similarly targeted for rapid turnover. We have used a chimeric gene composed mostly of growth hormone sequences with expression driven by the c-fos promoter to investigate the minimal sequence required to act as a functional destabilizing element and to monitor the effect of these sequences on early steps in the degradation pathway. We find that neither AUUUA, UAUUUA, nor AUUUAU can function as a destabilizing element. However, the sequence UAUUUAU, when present in three copies, is sufficient to destabilize a chimeric mRNA. We propose that this sequence functions by virtue of being a sufficient portion of the larger sequence, UUAUUUA(U/A)(U/A), that we propose forms the optimal binding site for a destabilizing factor. The destabilizing effect depends on the number of copies of this proposed binding site and their degree of mismatch in the first two and last two positions, with mismatches in the AUUUA sequence not being tolerated. We found a strict correlation between the effect of an ARE on degradation rate and the effect on the rate of poly(A) shortening, consistent with deadenylation being the first and rate-limiting step in degradation, and the step stimulated by destabilizing AREs. Deadenylation was observed to occur in at least two phases, with an oligo(A) intermediate transiently accumulating, consistent with the suggestion that the degradation processes may be similar in yeast and mammalian cells. AREs that are especially U rich and contain no UUAUUUA(U/A)(U/A) motifs failed to influence the degradation rate or the deadenylation rate, either when downstream of suboptimal destabilizing AREs or when alone.  相似文献   

10.
11.
12.
AU-rich elements (AREs) in the 3'-untranslated region of mRNAs promote rapid decay of the mRNAs for certain cytokines, including that encoding granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that an RNA molecule based on the ARE of GM-CSF mRNA is cleaved between U and A residues in the presence of bovine serum albumin of which cleavage effect is attenuated by acetylation. Furthermore, the expression of RNA molecule containing the ARE of GM-CSF mRNA in human cell lines was increased by inhibition of histone deacetylase activity and attenuation of Dicer expression. These findings suggest that degradation of mRNAs containing an ARE might be regulated by positive charge of polypeptides and Dicer.  相似文献   

13.
14.
V E Myer  X C Fan    J A Steitz 《The EMBO journal》1997,16(8):2130-2139
Expression of many proto-oncogenes, cytokines and lymphokines is regulated by targeting their messenger RNAs for rapid degradation. Essential signals for this control are AU-rich elements (AREs) in the 3' untranslated region (UTR) of these messages. The ARE is loosely defined as the five-nucleotide sequence AUUUA embedded in a uracil-rich region. A transacting factor, presumably a protein, binds the ARE and initiates recognition by the destabilization machinery. Numerous candidate ARE-binding proteins have been proposed. We show that a 32 kDa protein in HeLa nuclear extracts characterized previously has RNA-binding specificity that correlates with the activity of an ARE in directing mRNA decay. Purification and subsequent analyses demonstrate that this 32 kDa protein is identical to a recently identified member of the Elav-like gene family (ELG) called HuR. The in vitro binding selectivity of HuR is indicative of an ARE sequence's ability to destabilize a mRNA in vivo, suggesting a critical role for HuR in the regulation of mRNA degradation.  相似文献   

15.
The AU-rich element (ARE) RNA-binding protein KSRP (K-homology splicing regulator protein) contains four KH domains and promotes the degradation of specific mRNAs that encode proteins with functions in cellular proliferation and inflammatory response. The fourth KH domain (KH4) is essential for mRNA recognition and decay but requires the third KH domain (KH3) for its function. We show that KH3 and KH4 behave as independent binding modules and can interact with different regions of the AU-rich RNA targets of KSRP. This provides KSRP with the structural flexibility needed to recognize a set of different targets in the context of their 3'UTR structural settings. Surprisingly, we find that KH4 binds to its target AREs with lower affinity than KH3 and that KSRP's mRNA binding, and mRNA degradation activities are closely associated with a conserved structural element of KH4.  相似文献   

16.
17.
Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
  相似文献   

18.
AU-rich elements (AREs) are regulatory sequences located in the 3' untranslated region of many short-lived mRNAs. AREs are recognized by ARE-binding proteins and cause rapid mRNA degradation. Recent reports claimed that the function of AREs may be--at least in part--relayed through the miRNA pathway. We have revisited this hypothesis using dicer knock-out mouse embryonic fibroblasts and cultured Drosophila cells. In contrast to the published results, we find no evidence for a general requirement of the miRNA pathway in the function of AREs. Endogenous ier3 mRNA, which is known to contain a functional ARE, was degraded rapidly at indistinguishable rates in wild type and dicer knock-out mouse embryonic fibroblasts. In cultured Drosophila cells, both ARE-containing GFP reporter mRNAs and the endogenous cecA1 mRNA were resistant to depletion of the mi/siRNA factors dcr-1, dcr-2, ago1 and ago2. Furthermore, the Drosophila miRNA originally proposed to recognize AU-rich elements, miR-289, is not detectably expressed in flies or cultured S2 cells. Even our attempts to overexpress this miRNA from its genomic hairpin sequence failed. Thus, this sequence cannot serve as link between the miRNA and the AU-rich element mediated silencing pathways. Taken together, our studies in mammalian and Drosophila cells strongly argue that AREs can function independently of miRNAs.  相似文献   

19.
20.
Involvement of microRNA in AU-rich element-mediated mRNA instability   总被引:42,自引:0,他引:42  
Jing Q  Huang S  Guth S  Zarubin T  Motoyama A  Chen J  Di Padova F  Lin SC  Gram H  Han J 《Cell》2005,120(5):623-634
AU-rich elements (AREs) in the 3' untranslated region (UTR) of unstable mRNAs dictate their degradation. An RNAi-based screen performed in Drosophila S2 cells has revealed that Dicer1, Argonaute1 (Ago1) and Ago2, components involved in microRNA (miRNA) processing and function, are required for the rapid decay of mRNA containing AREs of tumor necrosis factor-alpha. The requirement for Dicer in the instability of ARE-containing mRNA (ARE-RNA) was confirmed in HeLa cells. We further observed that miR16, a human miRNA containing an UAAAUAUU sequence that is complementary to the ARE sequence, is required for ARE-RNA turnover. The role of miR16 in ARE-RNA decay is sequence-specific and requires the ARE binding protein tristetraprolin (TTP). TTP does not directly bind to miR16 but interacts through association with Ago/eiF2C family members to complex with miR16 and assists in the targeting of ARE. miRNA targeting of ARE, therefore, appears to be an essential step in ARE-mediated mRNA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号