首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opening and closing of the cardiac ryanodine (Ry) receptor (RyR) are coordinated by the free intracellular Ca2+ concentration, thus making the Ca2+ binding properties of the RyR important for excitation-contraction coupling. Unlike mammalian cardiac RyRs, which lose their normal function at low temperatures, RyRs of ectothermic vertebrates remain operative at 2-4 degrees C, as indicated by Ry sensitivity of contractile force. To investigate the mechanisms of low temperature adaptation of ectothermic RyRs, we compared Ca2+-dependent kinetics of [3H]ryanodine binding in cardiac preparations of a fish (burbot, Lota lota) and a mammal (rat). The number of ventricular [3H]ryanodine binding sites determined at 20 degrees C was 1.54 times higher in rat than burbot heart (0.401 +/- 0.039 and 0.264 +/- 0.019 pmol/mg protein, respectively) (P < 0.02), while the binding affinity (Kd) for [3H]ryanodine was similar (3.38 +/- 0.63 and 4.38 +/- 1.14 nM for rat and burbot, respectively) (P = 0.47). The high-affinity [3H]ryanodine binding to burbot and rat cardiac preparations was tightly coordinated by the free Ca2+ concentration at both 20 degrees C and 2 degrees C and did not differ between the two species. Half-maximal [3H]ryanodine binding occurred at 0.191 +/- 0.027 microM and 0.164 +/- 0.034 microM Ca2+ for rat and at 0.212 +/- 0.035 microM and 0.188 +/- 0.039 microM Ca2+ for burbot (P = 0.65), at 2 degrees C and 20 degrees C, respectively. In two other fish species, rainbow trout (Oncorhynchus mykiss) and crucian carp (Carassius carassius), the Ca2+-binding affinity at 20 degrees C was 4.4 and 5.9 times lower, respectively, than in the burbot. At 20 degrees C, the rate of [3H]ryanodine binding to the high-affinity binding site was similar in rat and burbot but was drastically slowed in rat at 2 degrees C. At 2 degrees C, [3H]ryanodine failed to dissociate from rat cardiac RyRs, and at 10 degrees C and 20 degrees C, the rate of dissociation was two to three times slower in rat than burbot preparations. The latter finding is compatible with a channel gating mechanism, where the closing of the Ca2+ release channel is impaired or severely retarded by low temperature in rat but less so in burbot preparations. The stronger effect of low temperature on association and dissociation rate of [3H]ryanodine binding in rat compared with burbot suggests that RyRs of the ectothermic fish, unlike those of endothermic rat, are better able to open and close at low temperatures.  相似文献   

2.
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type-specific manner in fish skeletal muscle (11). In this study, we compare [(3)H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [(3)H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (P(o)) of RyR1-slow was threefold less than the maximum P(o) of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest P(o) of all the RyR channels and displayed less inhibition at millimolar Ca(2+). The addition of 5 mM Mg-ATP or 2.5 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the channels increased the P(o) and [(3)H]ryanodine binding of both RyR1s but also caused a shift in the Ca(2+) dependency curve of RyR1-slow such that Ca(2+)-dependent inactivation was attenuated. [(3)H]ryanodine binding data also showed that Mg(2+)-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca(2+) is regulated in these muscle types.  相似文献   

3.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function.  相似文献   

4.
The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.  相似文献   

5.
The functional relevance of putative Ca(2+) binding motifs previously identified with Ca(2+) overlay binding analysis within the skeletal muscle ryanodine receptor isoform (RyR1) was examined using mutational analysis. EF hands between amino acid positions 4081 and 4092 (EF1) and 4116 and 4127 (EF2) were scrambled singly or in combination within the full-length rabbit RyR1 cDNA. These cDNAs were expressed in 1B5 RyR-deficient myotubes and channel function assessed using Ca(2+)-imaging techniques, [(3)H]ryanodine binding measurements, and single channel experiments. In intact myotubes, these mutations did not affect functional responses to either depolarization or RyR agonists (caffeine, 4-chloro-m-cresol) compared with wtRyR1. However, in [(3)H]ryanodine binding measurements, both Ca(2+) activation and inhibition of the EF1 mutant was significantly altered compared with wtRyR1. No high affinity [(3)H]ryanodine binding was observed in membranes expressing the EF2 mutation, although in single channel measurements, the EF2-disrupted channel could be activated by micromolar Ca(2+) concentrations. In addition, micromolar levels of ryanodine placed these channels into the classical half-conductance state, thus indicating that occupancy of high affinity ryanodine binding sites is not required for ryanodine-induced subconductance states in RyR1. Disruption of three additional putative RyR1 calcium binding motifs located between amino acid positions 4254 and 4265 (EF3), 4407 and 4418 (EF4), or 4490 and 4502 (EF5) either singly or in combination (EF3-5) did not affect functional responses in 1B5 myotubes except that the EC(50) for caffeine activation for the EF3 construct was significantly increased compared with wtRyR1. However, in [(3)H]ryanodine binding experiments, the Ca(2+)-dependent activation and inactivation of mutated RyRs containing EF3, EF4, or EF5 was unaffected when compared with wtRyR1.  相似文献   

6.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

7.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   

8.
Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent work has demonstrated direct interaction of Homer proteins with type 1 and type 2 ryanodine receptor (RyR) isoforms. Moreover, Homer proteins have been shown to modulate RyR-dependent Ca2+ release in isolated channels as well as in whole cell preparations. We now show that long and short forms of Homer H1 (H1c and H1-EVH1) are potent activators of Ca2+ release via RyR in skeletal muscle fibers (e.g. Ca2+ sparks) and potent modulators of ryanodine binding to membranes enriched with RyR, with H1c being significantly more potent than H1-EVH1. Homer did not significantly alter the spatio-temporal properties of the sparks, demonstrating that Homer increases the rate of opening of RyRs, with no change in the overall RyR channel open time and amount of Ca2+ released during a spark. No changes in Ca2+ spark frequency or properties were observed using a full-length H1c with mutation in the EVH1 binding domain (H1c-G89N). One novel finding with each Homer agonist (H1c and H1-EVH1) was that in combination their actions on [3H]ryanodine binding was additive, an effect also observed for these Homer agonists in the Ca2+ spark studies. Finally, in Ca2+ spark studies, excess H1c-G89N prevented the effects of H1c in a dominant negative manner. Taken together our results suggest that the EVH1 domain is critical for the agonist behavior on Ca2+ sparks and ryanodine binding, and that the coiled-coil domain, present in long but not short form Homer, confers an increase in agonist potential apparently through the multimeric association of Homer ligand.  相似文献   

9.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

10.
Ca(2+)-induced Ca2+ release (CICR) mechanism of cardiac excitation-contraction (e-c) coupling is dependent on the close apposition between the sarcolemmal dihydropyridine receptors (DHPR) and the sarcoplasmic reticulum (SR) ryanodine receptors (RyR). In particular, high RyR/DHPR ratio is considered to reflect strong dependence on SR Ca2+ stores for the intracellular Ca2+ transient. To indirectly evaluate the significance of CICR in fish hearts, densities of cardiac DHPRs and RyRs were compared in ventricular homogenates of three fish species (burbot, rainbow trout, and crucian carp) and adult rat by [3H] PN200-110 and [3H] ryanodine binding. The density of RyRs was significantly (P<0.05) higher in the adult rat (124+/-10 channels/microm3 myocyte volume) than in any of the fish species. Among the fish species, cold-acclimated (4 degrees C) trout had more RyRs than burbot, and crucian carp. The density of DHPRs was highest in the trout heart. RyR/DHPR ratio was significantly (P<0.05) higher in rat (4.1+/-0.5) than in the fish hearts (varying from 0.97+/-0.16 to 1.91+/-0.49) suggesting that "mammalian type" CICR is less important during e-c coupling in fish ventricular myocytes. In rainbow trout, acclimation to cold did not affect the RyR/DHPR ratio, while in crucian carp it was depressed in cold-acclimated animals (4 degrees C; 0.97+/-0.16) when compared to warm-acclimated fish (23 degrees C; 1.91+/-0.49). Although RyR/DHPR ratios were relatively low in fish hearts, there was a close correlation (r2=0.78) between the RyR/DHPR ratio and the magnitude of the Ry-sensitive component of contraction in ventricular muscle among the fish species examined in this study.  相似文献   

11.
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl- currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3-/-) mice, hypoxia-induced, but not submaximal noradrenaline-induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3-/- mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline- and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline-induced Ca2+ and contractile responses in PASMCs.  相似文献   

12.
In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.  相似文献   

13.
We have investigated the biochemical properties of the rabbit ryanodine receptor type 1 (RyR1) from skeletal muscle functionally expressed in insect sf 21 cells infected with recombinant baculovirus. Equilibrium [3H]ryanodine binding assays applied to total membrane fractions from sf 21 cells expressing recombinant RyR1 showed a non-hyperbolic saturation curve (Hill coefficient = 2.1). The [3H]ryanodine binding was enhanced by 1 mM AMP-PCP and 10 mM caffeine, whereas 10 mM Mg(2+) and 5 microM ruthenium red reduced the specific binding. The dependence of [3H]ryanodine binding on ionic strength showed positive cooperativity (Hill coefficient = 2.2) with a plateau at 1 M KCl. The recombinant RyR1 showed a bell-shaped [3H]ryanodine binding curve when free [Ca(2+)] was increased, with an optimal concentration around 100 microM.Confocal microscopy studies using the Ca(2+) ATPase selective inhibitor, thapsigargin coupled to fluorescein and ryanodine coupled to Texas red demonstrated that the recombinant RyR1 and the Ca(2+) ATPase co-localize to the same intracellular membrane. No significant RyR1 fluorescence was observed at the plasma membrane.Fluo-4-loaded sf 21 cells expressing recombinant RyR1 responded to activating-low ryanodine concentrations (100 nM) or caffeine (10 mM) with a sharp rise in intracellular Ca2 followed by a sustained phase, in contrast, sf 21 cells expressing the human bradykinin type 2 receptor did not respond to ryanodine or caffeine.These results demonstrate the expression of recombinant RyR1 in sf 21 cells with functional properties similar to what has been previously reported for native RyR1 in mammalian tissues, however, some differences were observed in [3H]ryanodine binding assays compared to native rabbit RyR1. Hence, the baculovirus expression system provides a generous source of protein to accomplish structure-function studies and an excellent model to assess functional properties of wild type and mutant RyR1.  相似文献   

14.
Biochemical investigation of Ca2+ release channel proteins has been carried out mainly with rabbit skeletal muscles, while frog skeletal muscles have been preferentially used for physiological investigation of Ca2+ release. In this review, we compared the properties of ryanodine receptors (RyR), Ca2+ release channel protein, in skeletal muscles between rabbit and frog. While the Ryr1 isoform is the main RyR of rabbit skeletal muscles, two isoforms, - and -RyR which are homologous to Ryr1 and Ryr3 isoforms in mammals, respectively, coexist as a homotetramer in a similar amount in frog skeletal muscles. The two isoforms in an isotonic medium show very similar property in [3H]ryanodine binding activity which is parallel to Ca2+-induced Ca2+ release (CICR) activity, and make independent contributions to the activities of the sarcoplasmic reticulum. CICR and [3H]ryanodine binding activities of rabbit and frog are qualitatively similar in stimulation by Ca2+, adenine nucleotide and caffeine, however, they showed the following quantitative differences. First, rabbit RyR showed higher Ca2+ affinity than the frog. Second, rabbit RyR showed higher activity in the presence of Ca2+ alone with less stimulation by adenine nucleotide than the frog. Third, rabbit RyR displayed less enhancement of [3H]ryanodine binding by caffeine in spite of having a similar magnitude of Ca2+ sensitization than the frog, which may explain the occasional difficulty by researchers to demonstrate caffeine contracture with mammalian skeletal muscles. Finally, but not least, rabbit RyR still showed marked inhibition of [3H]ryanodine binding in the presence of high Ca2+ concentrations in the 1 M NaCl medium, while frog RyR showed disinhibition. Other matters relevant to Ca2+ release were also discussed.  相似文献   

15.
Buthotus judaicus toxin 1 (BjTx-1) and toxin 2 (BjTx-2), two novel peptide activators of ryanodine receptors (RyR), were purified from the venom of the scorpion B. judaicus. Their amino acid sequences differ only in 1 residue out of 28 (residue 16 corresponds to Lys in BjTx-1 and Ile in BjTx-2). Despite a slight difference in EC(50), both toxins increased binding of [(3)H]ryanodine to skeletal sarcoplasmic reticulum at micromolar concentrations but had no effect on cardiac or liver microsomes. Their activating effect was Ca(2+)-dependent and was synergized by caffeine. B. judaicus toxins also increased binding of [(3)H]ryanodine to the purified RyR1, suggesting that a direct protein-protein interaction mediates the effect of the peptides. BjTx-1 and BjTx-2 induced Ca(2+) release from Ca(2+)-loaded sarcoplasmic reticulum vesicles in a dose-dependent manner and induced the appearance of long lived subconductance states in skeletal RyRs reconstituted into lipid bilayers. Three-dimensional structural modeling reveals that a cluster of positively charged residues (Lys(11) to Lys(16)) is a prominent structural motif of both toxins. A similar structural motif is believed to be important for activation of RyRs by imperatoxin A (IpTx(a)), another RyR-activating peptide (Gurrola, G. B., Arevalo, C., Sreekumar, R., Lokuta, A. J., Walker, J. W., and Valdivia, H. H. (1999) J. Biol. Chem. 274, 7879-7886). Thus, it is likely that B. judaicus toxins and imperatoxin A bind to RyRs by means of electrostatic interactions that lead to massive conformational changes in the channel protein. The different affinity and structural diversity of this family of scorpion peptides makes them excellent peptide probes to identify RyR domains that trigger the channel to open.  相似文献   

16.
Calmodulin (CaM) binds to the cardiac ryanodine receptor Ca2+ release channel (RyR2) with high affinity and may act as a regulatory channel subunit. Here we determine the role of CaM Met residues in the productive association of CaM with RyR2, as assessed via determinations of [3H]ryanodine and [35S]CaM binding to cardiac muscle sarcoplasmic reticulum (SR) vesicles. Oxidation of all nine CaM Met residues abolished the productive association of CaM with RyR2. Substitution of the COOH-terminal Mets of CaM with Leu decreased the extent of CaM inhibition of cardiac SR (CSR) vesicle [3H]ryanodine binding. In contrast, replacing the NH2-terminal Met of CaM with Leu increased the concentration of CaM required to inhibit CSR [3H]ryanodine binding but did not alter the extent of inhibition. Site-specific substitution of individual CaM Met residues with Gln demonstrated that Met124 was required for both high-affinity CaM binding to RyR2 and for maximal CaM inhibition. These results thus identify a Met residue critical for the productive association of CaM with RyR2 channels.  相似文献   

17.
Maurocalcine (MCa) is a 33 amino acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. MCa and mutated analogues were chemically synthesized, and their interaction with the skeletal muscle ryanodine receptor (RyR1) was studied on purified RyR1, sarcoplasmic reticulum (SR) vesicles, and cultured myotubes. MCa strongly potentiates [3H]ryanodine binding on SR vesicles (7-fold at pCa 5) with an apparent EC50 of 12 nm. MCa decreases the sensitivity of [3H]ryanodine binding to inhibitory high Ca2+ concentrations and increases it to the stimulatory low Ca2+ concentrations. In the presence of MCa, purified RyR1 channels show long-lasting openings characterized by a conductance equivalent to 60% of the full conductance. This effect correlates with a global increase in Ca2+ efflux as demonstrated by MCa effects on Ca2+ release from SR vesicles. In addition, we show for the first time that external application of MCa to cultured myotubes produces a cytosolic Ca2+ increase due to Ca2+ release from 4-chloro-m-cresol-sensitive intracellular stores. Using various MCa mutants, we identified a critical role of Arg24 for MCa binding onto RyR1. All of the other MCa mutants are still able to modify [3H]ryanodine binding although with a decreased EC50 and a lower stimulation efficacy. All of the active mutants produce both the appearance of a subconductance state and Ca2+ release from SR vesicles. Overall, these data identify some amino acid residues of MCa that support the effect of this toxin on ryanodine binding, RyR1 biophysical properties, and Ca2+ release from SR.  相似文献   

18.
We used a flow method for Ca2+ activation of sheep cardiac and rabbit skeletal ryanodine receptor (RyR) channels in lipid bilayers, which activated RyRs in < 20 ms and maintained a steady [Ca2+] for 5 s. [Ca2+] was rapidly altered by flowing Ca(2+)-buffered solutions containing 100 or 200 microM Ca2+ from a perfusion tube inserted in the cis, myoplasmic chamber above the bilayer. During steps from 0.1 to 100 microM, [Ca2+] reached 0.3 microM (activation threshold) and 10 microM (maximum Po) in times consistent with predictions of a solution exchange model. Immediately following rapid RyR activation, Po was 0.67 (cardiac) and 0.45 (skeletal) at a holding voltage of +40 mV (cis/trans). Po then declined (at constant [Ca2+]) in 70% of channels (n = 25) with time constants ranging from .5 to 15 s. The mechanism for Po decline, whether it be adaptation or inactivation, was not determined in this study. cis, 2 mM Mg2+ reduced the initial Po for skeletal RyRs to 0.21 and marginally slowed the declining phase. During very rapid falls in [Ca2+] from mM (inhibited) to sub-microM (sub-activating) levels, skeletal RyR did not open. We conclude the RyR gates responsible for Ca(2+)-dependent activation and inhibition of skeletal RyRs can gate independently.  相似文献   

19.
Hu XF  Liang X  Chen KY  Xie H  Xu Y  Zhu PH  Hu J 《Biophysical journal》2005,89(3):1692-1699
The calcium release channels/ryanodine receptors (RyRs) usually form two-dimensional regular lattices in the endoplasmic/sarcoplasmic reticulum membranes. However, the function and modulation of the interaction between neighboring RyRs are still unknown. Here, with an in vitro aqueous system, we demonstrate that the interaction between RyRs isolated from skeletal muscle (RyR1s) is modulated by their functional states by using photon correlation spectroscopy and [(3)H]ryanodine binding assay. High level of oligomerization is observed for resting closed RyR1s with nanomolar Ca(2+) in solution. Activation of RyR1s by micromolar Ca(2+) or/and millimolar AMP leads to the de-oligomerization of RyR1s. The oligomerization of RyR1s remains at high level when RyR1s are stabilized at closed state by Mg(2+). The modulation of RyR1-RyR1 interaction by the functional state is also observed under near-physiological conditions, suggesting that the interaction between arrayed RyR1s would be dynamically modulated during excitation-contraction coupling. These findings provide exciting new information to understand the function and operating mechanism of RyR arrays.  相似文献   

20.
The calcium release channels/ryanodine receptors (RyRs) are potential/putative targets of cADPR (cyclic ADP-ribose) action in many tissue systems. In striated muscles, where RyRs predominate, cADPR action on these channels is controversial. Here cADPR modulation of cardiac and skeletal muscle RyR channels was tested. We considered factors reported as necessary for cADPR action, such as the presence of calmodulin and/or FK binding proteins (FKBPs). We found: 1) The RyR channel isoforms were insensitive to cADPR (or its metabolite NAADP [nicotinic acid adenine dinucleotide phosphate]) under all conditions examined, as studied by: 1a) single channel recordings in planar lipid bilayers; 1b) macroscopic behavior of the RyRs in sarcoplasmic reticulum (SR) microsomes (including crude microsome preparations likely to retain putative cADPR cofactors) at room temperature and at 37 degrees C (net energized Ca2+ uptake or passive Ca2+ leak); 2) [32P]cADPR did not bind significantly to SR microsomes; 3) cADPR did not affect FKBP association to SR membranes. We conclude that cADPR does not interact directly with RyRs or RyR-associated SR proteins. Our results under in vitro conditions suggest that c ADPR effects on Ca2+ signaling observed in vivo in mammalian striated muscle cells may reflect indirect modulation of RyRs or RyR-independent Ca2+ release systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号