首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major difficulty in Schwann cell (SC) purification is contamination by fibroblasts, which usually become the predominant cell type during SC enrichment in vitro. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. Our objectives have been to develop an efficient, easily applicable, rapid method to obtain highly purified SC from the sciatic nerve of newborn rats. The method involves two rounds of purification to eliminate fibroblasts with the novel combined use of cytosine-B-arabinoside hydrochloride (Ara-C) action and differential cell detachment. Cultured cells were first treated with Ara-C for 24 h. The medium was replaced with the growth medium containing 20 ng/ml human heregulin1-β1 extracellular domain (HRG1-β1 ECD). After another 48 h in culture, the cells were treated with 0.05% trypsin, following which SCs, but not fibroblasts, were easily detached from the dishes. The advantage of this method is that the two steps can eliminate the fibroblasts complementarily. Ara-C eliminates most of the fibroblasts growing among SCs, whereas the differential cell detachment technique removes the remainder growing under or interacting with the SC layer. A purity of more than 99% SCs has been obtained, as confirmed by cell morphology and immunostaining. The purified SCs have a spindle-shaped, bipolar, and sometimes tripolar morphology, align in fascicles, and express S-100. The whole procedure takes about 10 days from primary culture to the purified SCs growing to confluence (only half the time reported previously). This protocol provides an alternative method for investigating peripheral nerve regeneration and potentially could be used to produce enough SCs to construct artificial nerve scaffolds in vitro. This work was supported by Tsinghua-Yue-Yuen Medical Sciences Fund, the National Natural Science Foundation of China (contract grant numbers: 30670528, 30700848, 30772443), Beijing Municipal Science & Technology Commission (BMSTC, contract grant number: H060920050430), National Basic Research Program of China (also called the 973 Program, contract grant number: 2005CB623905), and the National Natural Science Foundation of Beijing (contract grant number: 7082090).  相似文献   

2.
The purpose of this study was to optimize the methodology of cultivation of predegenerated Schwann cells (SCs). SCs were isolated from 7-day-predegenerated sciatic nerves of adult rats. We applied commercially available culture medium for cultivation of endothelial cells endothelial cell culture medium (EBM-2) instead of Dulbecco’s Modified Eagle’s Medium commonly used to culture adult Schwann cells. Additionally, cell culture medium was supplemented with factors specifically supporting SCs growth as: bovine pituitary extract (5 μg/ml), heregulin (40 ng/ml) and insulin (2.5 ng/ml). Similarly to the reports of others authors, we did not observe any beneficial effects of Forskolin application, so we didn’t supplement our medium with it. Cell culture purity was determined by counting the ratio of GFAP, N-Cadherin and NGFR p75-positive cells to total number of cells. About 94–97 % of cells were confirmed as Schwann cells. As a result, we obtained sufficient number and purity of Schwann cells to be applied in different experimental models in rats. EBM-2 medium coated with fibronectin was the best for cultivation of adult rat Schwann cells.  相似文献   

3.
Schwann cells (SCs) can be used to repair both the peripheral and central nervous systems. Therefore, establishment of a procedure to obtain activated, highly proliferative SCs, in an appropriate time for clinical applications, is a prerequisite. Purification is complicated by contamination with fibroblasts which often become the predominant cell type in an in vitro SC culture. This study describes a novel and efficient method to enrich SCs by utilizing the differential detachment properties of the two cell types. In culture, cells were treated with two different media and the chelator, EGTA, which detached SCs faster than fibroblasts and allowed for easy isolation of SCs. Within seven days, high yields of SCs with a purity of greater than 99% were achieved. This was confirmed by immunostaining characterization and flow-cytometric analyses using an antibody against the p75 low affinity nerve growth factor receptor (p75LNGFR). The entire procedure was completed in approximately 21 days. This method has the advantage of being technically easier, faster, and more efficient than other previously described methods. An SC culture that was about 99% homogenous was achieved.  相似文献   

4.
Diabetic peripheral neuropathy (DPN) is the most common and troublesome complication of type 2 diabetes mellitus (T2DM). Recent findings reveal an important role of endoplasmic reticulum (ER) stress in the development of DPN and identify a potential new therapeutic target. Schwann cells (SC), the myelinating cells in peripheral nervous system, are highly susceptible to ER homeostasis. Grape seed proanthocyanidins (GSPs) have been reported to improve DPN of type 1 diabetic rats and relieve ER stress in skeletal muscles and pancreas of T2DM. We investigated the potential role of ER stress in SC in regulating DPN of T2DM and assessed whether early intervention of GSPs would prevent DPN by modulating ER stress. The present study was performed in Sprague–Dawley rats made T2DM with low-dose streptozotocin and a high-carbohydrate/high-fat diet and in rat SC cultured in serum from type 2 diabetic rats. Diabetic rats showed a typical characteristic of T2DM and slowing of nerve conduction velocity (NCV) in sciatic/tibial nerves. The lesions of SC, Ca2+ overload and ER stress were present in sciatic nerves of diabetic rats, as well as in cell culture models. GSPs administration significantly decreased the low-density lipoprotein level and increased NCV in diabetic rats. GSPs or their metabolites also partially prevented cell injury, Ca2+ overload and ER stress in animal and cell culture models. Therefore, ER stress is implicated in peripheral neuropathy in animal and cell culture models of T2DM. Prophylactic GSPs treatment might have auxiliary preventive potential for DPN partially by alleviating ER stress.  相似文献   

5.
Schwann Cell Surface Proteins and Glycoproteins   总被引:3,自引:3,他引:0  
Abstract: To identify surface sialoglycoproteins of rat Schwann cells and to compare molecular weights of these sialoglycoproteins with those present in rat peripheral nervous system myelin, we prepared Schwann cells from sciatic nerves of 1–3-day-old rats and cultured them in monolayer. Surface sialoglycoproteins of the cultured cells were tritium-labeled by the periodateborohydride procedure and compared with sialoglycoproteins of adult rat peripheral nervous system myelin by fluorography following polyacrylamide slab gel electrophoresis in sodium dodecyl sulfate. Three radioactive bands with apparent molecular weights of 114,000–132,000, 105,000–115,000, and 44,000–56,000 were observed in both the Schwann cell and myelin preparations. Bands of similar apparent molecular weights were noted in Schwann cells metabolically radiolabeled with d -[1,6-3H]glucosamine. A band co-migrating with myelin P0 glycoprotein was the most intensely radiolabeled of all peptides in periodate-B3H4?treated myelin, but was present in only trace amounts in periodate-B3H4? or d -[1,6-3H]glucosamine radiolabeled Schwann cells. Many presumably non-myelin glycoproteins were identified in the cultured Schwann cells by the periodate-borohydride procedure and by incubation of the cells with d -[1,6-3H]glucosamine. An immunoprecipitation technique was used to detect radiolabeled peptides in a nonionic detergent extract of freshly prepared, surface-radioiodinated Schwann cells that were bound by a rabbit anti-Schwann cell serum preabsorbed with rat fibroblasts. Many radioactive peptides were detected in the immunoprecipitate, but the two most intensely radiolabeled had apparent molecular weights of 105,000–115,000 and 95,000–106,000. This study has identified a number of glycoproteins synthesized by cultured rat Schwann cells which resemble in apparent molecular weight the glycoproteins expressed in rat peripheral nervous system myelin and has defined Schwann cell surface proteins recognized by a specific anti-rat Schwann cell antiserum.  相似文献   

6.

Background

Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process.

Objective

Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury.

Methods

Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group), Schwann cell grafts (3×105/2 µL; SC group), treadmill training (TMT group), and treadmill training and Schwann cell grafts (TMT + SC group). Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis.

Results

Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons.

Conclusion

These data provide evidence that this combination of therapeutic strategies can significantly improve functional and morphological recovery after sciatic injury.  相似文献   

7.
Myelin basic protein (MBP) and two peptides derived from MBP (MBP1–44 and MBP152–167) stimulated Schwann cell (SC) proliferation in a cAMP-mediated process. The two mitogenic regions of MBP did not compete with one another for binding to SC suggesting a distinctive SC receptor for each mitogenic peptide. Neutralizing antibodies to the fibroblast growth factor receptor blocked the mitogenic effect of the myelin-related SC mitogen found in the supernatant of myelin-fed macrophages. The binding of 125I-MBP to Schwann cells was specifically inhibited by basic fibroblast growth factor (bFGF) and conversely the binding of 125I-bFGF was competitively inhibited by MBP. These data suggested that the mitogenic effect of one MBP peptide was mediated by a bFGF receptor. The binding of MBP to ganglioside GM1 and the ability of MBP peptides containing homology to the B subunit of cholera toxin (which binds ganglioside GM1) to compete for the binding of a mitogenic peptide (MBP1–44) to SC, identified ganglioside GM1 as a second SC receptor. Based on these results, we conclude that MBP1–44 and MBP152–167 associate with ganglioside GM1 and the bFGF receptor respectively to stimulate SC mitosis.  相似文献   

8.
The differentiation of myelin-forming Schwann cells (SC) is completed with the appearance of myelin proteins MBP and P0 and a concomitant downregulation of markers GFAP and p75NTR, which are expressed by immature and adult non-myelin-forming SC. We have previously demonstrated that holotransferrin (hTf) can prevent SC dedifferentiation in culture ( Salis et al., 2002), while apotransferrin (aTf) cannot. As a consequence, we used pure cultured SC and submitted them to serum deprivation in order to promote dedifferentiation and evaluate the prodifferentiating ability of ferric ammonium citrate (FAC) through the expression of MBP, P0, p75NTR and c-myc. The levels of cAMP, CREB and p-CREB were also measured. Results show that Fe3+, either in its free form or as hTf, can prevent the dedifferentiation promoted by serum withdrawal.  相似文献   

9.
目的:改善并建立一种新的大鼠雪旺氏细胞(SCs)的培养方法,为研究外周神经损伤修复模型及其它外周神经相关实验提供高纯度、多数量的SCs。方法:麻醉后显微镜下解剖并分离新生3天内SD大鼠的坐骨神经,采取植块培养的方法,显微镜下尽量剥除坐骨神经纤维外膜,并梳理松解坐骨神经的神经纤维束。梳理后剪碎坐骨神经,每小块种植于培养皿中,使用纯血清培养4小时,再加入正常的DMEM/F12培养基,消化培养2-3代。最后用S-100及GFAP免疫荧光染色进行纯度鉴定。结果:本实验在总结前人实验的基础上,联合创新采用坐骨神经外膜剥除、神经内膜梳理、纯血清培养以及胰酶差速消化等方法,短时间内获得SCs的纯度可达99%以上,可用于进一步对雪旺氏细胞的功能进行研究。结论:这种选用乳鼠坐骨神经植块、血清培养的方法简单易操作,无需额外的生长因子及抑制因子,可在短期内获得大量高纯度的SCs。  相似文献   

10.
Summary Ribosomes were isolated from larvae and adult flies, and the purity of the preparation was checked by electron microscopy. The ribosomal proteins were extracted with cold dilute hydrochloric acid, and precipitated with cold acetone. The proteins were characterized by polyacrylamide gel electrophoresis. At pH 3.0 at least 25 bands of different color intensities were resolved, forming a complex pattern.On the basis of electrophoretic mobilities, it was shown that some ribosomal proteins are species-specific, and that larval ribosomes have three protein components more than ribosomes from adult flies.Incubation of the ribosomes with 0.75 M NH4Cl at a low Mg++ concentration lead to detachment of 64% of the ribosomal protein. This detachment of protein molecules was considerably reduced by a five-fold increase of Mg++ ions.  相似文献   

11.
Wei Y  Gong K  Zheng Z  Liu L  Wang A  Zhang L  Ao Q  Gong Y  Zhang X 《Cell proliferation》2010,43(6):606-616
Objectives: Schwann cell (SC) transplantation is a promising therapy for peripheral nerve transaction, however, clinical use of SCs is limited due to their very limited availability. Adipose‐derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years. The aim of this study was to evaluate the feasibility of using ADSCs as a source of stem cells for differentiation into Schwann‐like cells by an indirect co‐culture approach, in vitro. Materials and methods: Multilineage differentiation potential of the obtained ADSCs was assayed by testing their ability to differentiate into osteoblasts and adipocytes. The ADSCs were co‐cultured with SCs to be induced into Schwann‐like cells through proximity, using a Millicell system. Expression of typical SC markers S‐100, GFAP and P75NTR of the treated ADSCs was determined by immunocytochemical staining, western blotting and RT‐PCR. Myelination capacity of the differentiated ADSCs (dADSCs) was evaluated in dADSC/dorsal root ganglia neuron (DRGN) co‐cultures. Results: The treated ADSCs adopted a spindle shaped‐like morphology after co‐cultured with SCs for 6 days. All results of immunocytochemical staining, western blotting and RT‐PCR showed that the treated cells expressed S‐100, GFAP and P75NTR, indications of differentiation. dADSCs could form Schwann‐like cell myelin in co‐culture with DRGNs. Undifferentiated ADSCs (uADSCs) did not form myelin compared to DRGNs cultured alone, but could produce neurite extension. Conclusions: These results demonstrate that this indirect co‐culture microenvironment could induce ADSCs to differentiate into Schwann‐like cells in vitro, which may be beneficial for treatment of peripheral nerve injuries in the near future.  相似文献   

12.
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.  相似文献   

13.
Schwann cells (SCs) are basic elements for cell therapy and tissue engineering in the central and peripheral nervous system. Therefore, the development of a reliable method to obtain SC cultures is required. For possible therapeutic applications the cultures need to produce a sufficiently large number of SCs with a high level of purity in a relatively short period of time. To increase SC yield and purity we pre-degenerated pieces of 1-2 mm of adult rabbit sciatic nerves by incubating them for seven days in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum, penicillin/streptomycin and NRG1-β1. Following pre-degeneration the nerve pieces were dissociated and then cultured for 6 or 15 days in the same culture medium. After 6 days of culture we obtained around 9.5x103 cells/mg with approximately 94% SCs (S-100 positive) purity. After 15 days of culture the yield was about 80x103 cells/mg and the purity was approximately 75%. Pre-degeneration and subsequent culture of small pieces of adult nerve with NRG1-β1 supplemented medium increased the number of SCs and restricted the overgrowth of fibroblast-like cells.  相似文献   

14.
目的:探讨利用免疫磁珠从新生SD大鼠耳蜗螺旋神经节分离培养获得大量、高纯度雪旺细胞的方法。方法:选用1-3d SD大鼠,无菌条件下暴露双侧听泡,在高倍镜下仔细剥离蜗壳,开放耳蜗,完整取出耳蜗组织,分离并且除去膜蜗管外侧壁的血管纹和基底膜组织,然后剪碎。用0.25%的胰蛋白酶消化,用胎牛血清中止消化,离心以后加入DMEM/F12培养液培养。3-5天后对细胞应用免疫磁珠阳性分选方法进行纯化,培养2天后进行传代接种,培养过程中对提纯后的大鼠耳蜗雪旺细胞进行形态学观察、并绘制其生长曲线,采用细胞免疫荧光染色对细胞进行S-100免疫荧光鉴定并且计算细胞纯度。结果:分离培养后所得的细胞即为雪旺细胞;利用免疫磁珠阳性分选法对培养所得的细胞进行纯化,纯化后的大鼠耳蜗雪旺细胞纯度为97%±1.2%。结论:免疫磁珠法是一种有效的分离纯化新生大鼠仔鼠耳蜗螺旋神经节雪旺细胞的方法。所得耳蜗雪旺细胞活力强、纯度高,可以用于耳蜗雪旺细胞与螺旋神经节轴突的生长和再生等相关研究。  相似文献   

15.
16.
Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.  相似文献   

17.
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.  相似文献   

18.
Summary In testes of rats from 2 to 60 days of age, we examined the number of Sertoli cells (SC) and Leydig cells (LC) as well as the binding of radioiodinated gonadotropins to frozen sections and homogenates. The number of SC per testis increased only during the first 2 postnatal weeks, whereas that of LC was stable up to days 7–10 and increased thereafter. The uptake of 125I-labelled human follicle-stimulating hormone (125I-FSH) to frozen sections was confined to sex cords or seminiferous tubules, while that of 125I-labelled human choriogonadotropin (125I-hCG) matched the distribution of LC in the interstitium. High affinity receptors for FSH and hCG were found in homogenates at all stages studied. The number of FSH receptors per testis increased steadily, whereas that of hCG receptors was low until days 7–10 and rose afterwards. Thus, SC in rat testis appear to proliferate in the presence of fetal LC during the first 2 postnatal weeks and to differentiate concomitantly with the emergence of the adult LC generation after day 10. The complement of FSH receptors in SC remains constant as they proliferate and increases after day 21 as they differentiate. The hCG receptor number is relatively fixed in each LC generation, being higher in adult compared to fetal LC.  相似文献   

19.
Central neurons lose the ability for axonal re-growth during development and typically do not regenerate their axons following axotomy once they become mature unless given a growth-permissive environment i.e. peripheral nerve graft. In the present study, the growth responsiveness of purified retinal ganglion cells (RGCs) at different ages to neurotrophic factors and Schwann cell (SC)-secreted factors were examined directly. The purity of adult RGCs was 97% as assessed by retrograde labelling with 4,6-diamidino-2-phenylindole. The stability of cultures were demonstrated by long-term survival (30 days) in medium contained brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and forskolin (F) (BCF). RGCs from postnatal (P) (P0, P4, P8, P21) and adult (P90) rats showed decreasing levels of survival and neuritogenesis when grown in BCF. In contrast, the opposite was observed in SC-conditioned medium (CM)-treated P0-P8 RGCs which were increasingly responsive. SCCM induced maximal neurite outgrowth in P8 RGCs via the activation of extracellular regulated kinase 1/2 (Erk1/2). Inhibition of mitogen-activated protein kinase-Erk1/2 signaling using an Erk1/2-specific inhibitor (UO126) abolished SCCM-induced Erk1/2 phosphorylation and neuritogenesis completely. Although both SCCM and BCF failed to sustain the same levels of growth in P21 or P90 cultures as observed in P8 cultures, SCCM promoted higher survival and neuritogenesis than BCF-treated adult RGCs. This study is the first report of adult rat RGC purification and demonstrates that mature RGCs need multiple factors for survival and neurite outgrowth.  相似文献   

20.
A D Hartman  D W Christ 《Life sciences》1978,22(12):1087-1096
Studies were conducted on the norepinephrine (NE) stimulated lipolytic sensitivity of adipocytes from epididymal (Epi), perirenal (PR), subcutaneous (SC) and mesentric (M) depots from young (7–8 wk.) and adult (14–16 wk.) male rats. In the young rats dose response curves to NE were similar for Epi, PR and M depots whereas adipocytes from the SC depot showed a diminished effect over the mid-portion of the curve. This difference could not be ascribed to differences in cell size. In the adult rats glycerol release in the Epi depot in response to NE was identical to the younger rats which was in marked contrast to the other depots in which glycerol release was decreased in comparison to the younger animals. This decreased responsiveness was probably largely a result of age and not changes vn adipocyte size within a given depot. In these older rats, glycerol release was greatest in the Epi cells, least in the SC and M depots, and intermediate in PR. When young rats were subjected to a 72-hour fast, loss of triglyceride per cell was the same in all depots as predicted by the in vitro data whereas in old rats (610 g), triglyceride loss was proportional to cell size with Epi ≥ PR > SC ≥ M. This was also essentially in agreement with the in vitro lipolytic data from adult rats. These data demonstrate lipolytic differences between depots that are minimal in young rats and which are accentuated with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号