首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three nonhydrolyzable aspartyl adenylate analogs have been prepared and tested as inhibitors of E. coli aspartyl-tRNA synthetase. 5'-O-[N-(L-Aspartyl)sulfamoyl]adenosine is a potent competitive inhibitor (K(i) = 15 nM) whereas L-aspartol adenylate is a weaker inhibitor (K(i) = 45 microM) with respect to aspartic acid. The corresponding ketomethylphosphonate (a novel isosteric replacement) is also a strong inhibitor (K(i) = 123 nM).  相似文献   

2.
Alanyl-tRNA synthetase, a dimeric class 2 aminoacyl-tRNA synthetase, activates glycine and serine at significant rates. An editing activity hydrolyzes Gly-tRNA(ala) and Ser-tRNA(ala) to ensure fidelity of aminoacylation. Analytical ultracentrifugation demonstrates that the enzyme is predominately a dimer in solution. ATP binding to full length enzyme (ARS875) and to an N-terminal construct (ARS461) is endothermic (ΔH = 3-4 kcal mol(-1)) with stoichiometries of 1:1 for ARS461 and 2:1 for full-length dimer. Binding of aminoacyl-adenylate analogues, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (ASAd) and 5'-O-[N-(L-glycinyl)sulfamoyl]adenosine (GSAd), are exothermic; ASAd exhibits a large negative heat capacity change (ΔC(p) = 0.48 kcal mol(-1) K(-1)). Modification of alanyl-tRNA synthetase with periodate-oxidized tRNA(ala) (otRNA(ala)) generates multiple, covalent, enzyme-tRNA(ala) products. The distribution of these products is altered by ATP, ATP and alanine, and aminoacyl-adenylate analogues (ASAd and GSAd). Alanyl-tRNA synthetase was modified with otRNA(ala), and tRNA-peptides from tryptic digests were purified by ion exchange chromatography. Six peptides linked through a cyclic dehydromoropholino structure at the 3'-end of tRNA(ala) were sequenced by mass spectrometry. One site lies in the N-terminal adenylate synthesis domain (residue 74), two lie in the opening to the editing site (residues 526 and 585), and three (residues 637, 639, and 648) lie on the back side of the editing domain. At least one additional modification site was inferred from analysis of modification of ARS461. The location of the sites modified by otRNA(ala) suggests that there are multiple modes of interaction of tRNA(ala) with the enzyme, whose distribution is influenced by occupation of the ATP binding site.  相似文献   

3.
D Kern  J Lapointe 《Biochemistry》1979,18(26):5809-5818
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.  相似文献   

4.
The charging of glutamate on tRNA(Glu) is catalyzed by glutamyl-tRNA synthetase, a monomer of 53.8 kilodaltons in Escherichia coli. To obtain the large amounts of enzyme necessary for the identification of structural domains, we have inserted the structural gene gltX in the conditional runaway-replication plasmid pOU61, which led to a 350-fold overproduction of glutamyl-tRNA synthetase. Partial proteolysis of this enzyme revealed the existence of preferential sites of attack that, according to their N-terminal sequences, delimit regions of 12.9, 2.3, 12.1, and 26.5 kilodaltons from the N- to C-terminal of the enzyme. Their sizes suggest that the 2.3-kilodalton fragment is a hinge structure, and that those of 12.9, 12.1, and 26.5 kilodaltons are domain structures. The 12.9-kilodalton domain of the glutamyl-tRNA synthetase of E. coli is the only long region of this enzyme displaying a good amino acid sequence similarity with the glutaminyl-tRNA synthetase of Escherichia coli.  相似文献   

5.
Tian Y  Suk DH  Cai F  Crich D  Mesecar AD 《Biochemistry》2008,47(47):12434-12447
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (EC 6.2.1.26) catalyzes the ATP-dependent condensation of o-succinylbenzoate (OSB) and CoA to form OSB-CoA, the fourth step of the menaquinone biosynthetic pathway in Bacillus anthracis. Gene knockout studies have highlighted this enzyme as a potential target for the discovery of new antibiotics. Here we report the first studies on the kinetic mechanism of B. anthracis OSB-CoA synthetase, classifying it as an ordered bi uni uni bi ping-pong mechanism. Through a series of pre-steady-state and steady-state kinetic studies in conjunction with direct binding studies, it is demonstrated that CoA, the last substrate to bind, strongly activates the first half-reaction after the first round of turnover. The activation of the first half-reaction is most likely achieved by CoA stabilizing conformations of the enzyme in the "F" form, which slowly isomerize back to the E form. Thus, the kinetic mechanism of OSB-CoA synthetase may be more accurately described as an ordered bi uni uni bi iso ping-pong mechanism. The substrate specificity of OSB-CoA synthetase was probed using a series of OSB analogues with alterations in the carboxylate groups. OSB-CoA shows a strong preference for OSB over all of the analogues tested as none were active except 4-[2-(trifluoromethyl)phenyl]-4-oxobutyric acid which exhibited a 100-fold decrease in k(cat)/K(m). On the basis of an understanding of OSB-CoA synthetase's kinetic mechanism and substrate specificity, a reaction intermediate analogue of OSB-AMP, 5'-O-{N-[2-(trifluoromethyl)phenyl]-4-oxobutyl}adenosine sulfonamide (TFMP-butyl-AMS), was designed and synthesized. This inhibitor was found to be an uncompetitive inhibitor to CoA and a mixed-type inhibitor to ATP and OSB with low micromolar inhibition constants. Collectively, these results should serve as an important forerunner to more detailed and extensive inhibitor design studies aimed at developing lead compounds against the OSB-CoA synthetase class of enzymes.  相似文献   

6.
Sodium pseudomonate was shown to be a powerful competitive inhibitor of Escherichia coli B isoleucyl-tRNA synthetase (Ile-tRNA synthetase). The antibiotic competitively inhibits (Ki 6 nM; cf. Km 6.3 microM), with respect top isoleucine, the formation of the enzyme . Ile approximately AMP complex as measured by the pyrophosphate-exchange reaction, and has no effect on the transfer of [14C]isoleucine from the enzyme . [14C]Ile approximately AMP complex to tRNAIle. The inhibitory constant for the pyrophosphate-exchange reaction was of the same order as that determined for the inhibition of the overall aminoacylation reaction (Ki 2.5 nM; cf. Km 11.1 microM). Sodium [9'-3H]pseudomonate forms a stable complex with Ile-tRNA synthetase. Gel-filtration and gel-electrophoresis studies showed that the antibiotic is only fully released from the complex by 5 M-urea treatment or boiling in 0.1% sodium dodecyl sulphate. The molar binding ratio of sodium [9'-3H]pseudomonate to Ile-tRNA synthetase was found to be 0.85:1 by equilibrium dialysis. Aminoacylation of yeast tRNAIle by rat liver Ile-tRNA synthetase was also competitively inhibited with respect to isoleucine, Ki 20 microM (cf. Km 5.4 microM). The Km values for the rat liver and E. coli B enzymes were of the same order, but the Ki for the rat liver enzyme was 8000 times the Ki for the E. coli B enzyme. This presumably explains the low toxicity of the antibiotic in mammals.  相似文献   

7.
The involvement of amino acids within the motif 2 loop of Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS) in serine and ATP binding was demonstrated previously [B. Lenhard et al., J. Biol. Chem. 272 (1997) 1136-1141]. In our attempt to analyze the structural basis for the substrate specificity and to explore further the catalytic mechanism employed by S. cerevisiae SerRS, two new active site mutants, SerRS11 and SerRS12, were constructed. The catalytic effects of amino acid replacement at positions Lys287, Asp288 and Ala289 with purified wild-type and mutant seryl-tRNA synthetases were tested. The alteration of these semi-conserved amino acids interferes with tRNA-dependent optimization of serine recognition. Additionally, mutated enzymes SerRS11 (Lys287Thr, Asp288Tyr, Ala289Val) and SerRS12 (Lys287Arg) are less sensitive to inhibition by two competitive inhibitors: serine hydroxamate, an analogue of serine, and 5'-O-[N-(L-seryl)-sulfamoyl]adenosine, a stable analogue of aminoacyl adenylate, than the wild-type enzyme. SerRS mutants also display different activation kinetics for serine and serine hydroxamate, indicating that specificity toward the substrates is modulated by amino acid replacement in the motif 2 loop.  相似文献   

8.
A heat-labile, non-dialyzable factor(s) in soluble fractions from Escherichia coli strains and Bacillus subtilis was found to incorporate the radioactivity of [14C]glutamic acid into 95 degrees C CCl3COOH-insoluble fraction. Incorporation catalyzed by a partially purified factor from E. coli B required ATP, Mg2+, tRNA, casein, carbonate, and 2-mercaptoethanol. A mixture of nineteen amino acids other than glutamic acid had no effect on the incorporation. Heparin, spermine and monovalent cations were inhibitory. Incorporation proceeded via glutamyl-tRNA. The incorporation from [14C]glutamyl-tRNA required Mg2+, casein, carbonate, and 2-mercaptoethanol, and there was no incorporation from [14C]aspartyl-tRNA. The reaction product was identified as protein. The incorporated moiety was the glutamyl moiety of glutamic acid and it retained a free alpha-amino group in the product protein. The incorporating factor of E. coli B was demonstrated to be glutamyl-tRNA synthetase.  相似文献   

9.
The synthesis and evaluation of N-[4-[5-(2,4-diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-2-(2,2,2-trifluoroacetyl)pentyl]benzoyl]-L-glutamic acid (2) as an inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) are reported. The inhibitor 2 was prepared in a convergent synthesis involving C-alkylation of methyl 4-(4,4,4-trifluoro-3-dimethylhydrazonobutyl)benzoate with 1-chloro-3-iodopropane followed by construction of the pyrimidinone ring. Compound 2 was found to be an effective inhibitor of recombinant human GAR Tfase (K(i) = 0.50 microM), whereas it was inactive (K(i) > 100 microM) against E. coli GAR Tfase as well as recombinant human AICAR Tfase. Compound 2 exhibited modest, purine-sensitive growth inhibitory activity against the CCRF-CEM cell line (IC50 = 6.0 microM).  相似文献   

10.
Methionyl-tRNA synthetase from Escherichia coli catalyses the activation of [18O2]methionine by adenosine 5'-[(R)-alpha 17O]triphosphate with inversion of configuration at P alpha. Furthermore methionyl-tRNA synthetase does not catalyse positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of methionine or in the presence of the competitive inhibitor, methioninol, which eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. These observations require that methionyl-tRNA synthetase catalyses the activation of methionine by an associative 'in-line' nucleotidyl transfer mechanism. A kinetic study of positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the presence of methionine, Mg2+ and methionyl-tRNA synthetase showed that torsional equilibration (18O exchange into the P alpha--O--P beta bridge) occurs faster than tumbling (18O exchange into P gamma by rotation about the C2 axis of Mg[18O2]PPi), demonstratings that the positional isotope exchange occurs at least in part in the E X Met-AMP X Mg[18O2]PPi complex.  相似文献   

11.
The stereochemical course of the argininosuccinate synthetase reaction has been determined. The SP isomer of [alpha-17O,alpha-18O,alpha beta-18O]ATP is cleaved to (SP)-[16O,17O,18O]AMP by the action of argininosuccinate synthetase in the presence of citrulline and aspartate. The overall stereochemical transformation is therefore net inversion, and thus the enzyme does not catalyze the formation of an adenylylated enzyme intermediate prior to the synthesis of citrulline adenylate. The RP isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) is a substrate in the presence of Mg2+, but the SP isomer is a substrate when Cd2+ is used as the activating divalent cation. Therefore, the lambda screw sense configuration of the beta,gamma-bidentate metal--ATP complex is preferred by the enzyme as the actual substrate. No significant discrimination could be detected between the RP and SP isomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) when Mg2+ or Mn2+ are used as the divalent cation. Argininosuccinate synthetase has been shown to require a free divalent cation for full activity in addition to the metal ion needed to complex the ATP used in the reaction.  相似文献   

12.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

13.
In order to elucidate the substrate specificity of alanyl-tRNA synthetase, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (Ala-SA), an analogue of alanyl-AMP, was chemically synthesized. Its binding ability is similar to that of the substrate based on the inhibitory activity for the aminoacylation of alanyl-tRNA synthetase. Taking advantage of the stable sulfamoyl bond of Ala-Sa, compared with the highly labile aminoacyl bond of alanyl-AMP, the molecular conformation of the former inhibitor was studied by X-ray single crystal analysis. Crystal data are as follows: C13H19N7O7S.2H2O, space group C2, a = 39.620(6), b = 5.757(1), c = 20.040(3) A, beta = 117.2(1) degrees, V = 4065(9) A3, Z = 8, and final R = 0.065 for 2785 independent reflections of F(2)0 greater than or equal to 2 sigma (F0)2. In the crystal, the molecule is in a zwitterionic state with the terminal amino group protonated and sulfamoyl group deprotonated, and takes an open conformation, where the L-alanine moiety is located far from the adenosine moiety with gauche/trans and trans orientations about the exocyclic C(4')-C(5') and C(5')-O(5') bonds, respectively. The conformation of the adenosine moiety is anti for the glycosyl bond and C(3')-endo for the ribose puckering, and alanine is in the usually observed trans region for the psi torsion angle. The molecular dimensions of the sulfamoyl group are nearly the same as those of the phosphate group. The biological significance of the observed Ala-SA conformation is discussed in relation with the molecular conformation of tyrosyl-AMP complexed with tyrosyl-tRNA synthetase.  相似文献   

14.
The synthesis of 5-aminolevulinic acid commences with the ligation of glutamate to a specific tRNAGlu by a glutamyl-tRNA synthetase (E.C. 6.1.1.17) (Huang et al., 1984, Science 225, 1482–1484). The synthetase from the yellow pigment mutant C-2A of the unicellular green alga Scenedesmus obliquus was purified by sequential column chromatography on Sephacryl S-300, Blue Sepharose, phosphocellulose P11 and by fast protein liquid chromatography (FPLC) on Mono Q. After denaturing sodium dodecylsulfate (SDS)-gel electrophoresis the purified enzyme preparation revealed a single protein band with a molecular mass of 55 kDa, proving the apparent homogeneity of the glutamyl-tRNA synthetase. A molecular mass of 105 ± 10 kDa was determined for the native protein by chromatography on Sephadex G-150. From these data it can be concluded that the glutamyl-tRNA synthetase from S. obliquus is a homodimer. The purified protein is active within a pH range from 7.0 to 9.0 with a maximum activity at pH 8.0. Kinetics for the binding of glutamate to the tRNA, performed with highly purified enzyme preparations, showed a K m value of 2.3 M ± 0.3 for glutamate.Abbreviations ALA 5-aminolevulinic acid - FPLC fast protein liquid chromatography - Glu glutamate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SDS sodium dodecylsulfate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine This work was supported by a grant of the Deutsche Forschungsgemeinschaft. U.C. Vothknecht is grateful for a Nachwuchs-förderungsstipendium des Landes Hessen. The authors want to thank Ms. B. Böhm, J. Gade and K. Eckhardt for skillful technical assistance. The authors also want to thank Dr. C.G. Kannangara (Carlsberg Institute, Kopenhagen, Denmark) for the donation of tRNA from barley and Dr. D. Jahn (FB Biology/Microbiology, Philipps-University, Marburg, FRG) for the tRNAGlufrom E. coli.  相似文献   

15.
Bovee ML  Pierce MA  Francklyn CS 《Biochemistry》2003,42(51):15102-15113
Threonyl-tRNA synthetase (ThrRS) must discriminate among closely related amino acids to maintain the fidelity of protein synthesis. Here, a pre-steady state kinetic analysis of the ThRS-catalyzed adenylation reaction was carried out by monitoring changes in intrinsic tryptophan fluorescence. Stopped flow fluorimetry for the forward reaction gave a saturable fluorescence quench whose apparent rate increased hyperbolically with ATP concentration, consistent with a two-step mechanism in which rapid substrate binding precedes an isomerization step. From similar experiments, the equilibrium dissociation constants for dissociation of ATP from the E.Thr complex (K(3) = 450 +/- 180 microM) and threonine from the E.ATP complex (K'(4) = 135 microM) and the forward rate constant for adenylation (k(+5) = 29 +/- 4 s(-1)) were determined. A saturable fluorescence increase accompanied the pyrophosphorolysis of the E.Thr - AMP complex, affording the dissociation constant for PP(i) (K(6) = 170 +/- 50 microM) and the reverse rate constant (k(-5) = 47 +/- 4 s(-1)). The longer side chain of beta-hydroxynorvaline increased the apparent dissociation constant (K(4[HNV]) = 6.8 +/- 2.8 mM) with only a small reduction in the forward rate (k'(+5[HNV]) = 20 +/- 3.1 s(-1)). In contrast, two nonproductive substrates, threoninol and the adenylate analogue 5'-O-[N-(L-threonyl)sulfamoyl]adenosine (Thr-AMS), exhibited linear increases in k(app) with ligand concentration, suggesting that their binding is slow relative to isomerization. The proposed mechanism is consistent with steady state kinetic parameters. The role of threonine binding loop residue Trp434 in fluorescence changes was established by mutagenesis. The combined kinetic and molecular genetic analyses presented here support the principle of induced fit in the ThrRS-catalyzed adenylation reaction, in which substrate binding drives conformational changes that orient substrates and active site groups for catalysis.  相似文献   

16.
E7070 [N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide] is an anticancer drug candidate under clinical development for the treatment of several types of cancers. We prove here that this compound also acts as a potent carbonic anhydrase (CA) inhibitor. Similarly to the clinically used drugs acetazolamide, methazolamide and topiramate, E7070 showed inhibition constants in the range of 15-31nM against isozymes I, II and IX, being slightly less effective as a CA IV inhibitor (K(i) of 65nM). The X-ray crystal structure of the adduct of hCA II with E7070 revealed unprecedented interactions between the inhibitor and the active site, with three different conformations of the chloroindole fragment of the inhibitor interacting with different amino acid residues/water molecules of the enzyme. A superimposition of these conformations with those of other sulfonamide/sulfamate CA inhibitors indicated that similar regions of the hCA II active site could be involved in the interaction with inhibitors.  相似文献   

17.
A photoreactive, radiolabeled pyrimidine nucleotide, 3'-O-(4-benzoyl)benzoylcytidine 5'-triphosphate was synthesized from benzoylbenzoic acid and radiolabeled CTP. Benzoylbenzoyl-[5-3H]CTP could substitute for CTP, in an enzymatic reaction with N-acetylneuraminic acid catalyzed by Escherichia coli or rat liver CMP-NeuAc synthetase, to yield radiolabeled benzoyl-benzoyl-CMP-NeuAc. E. coli CMP-NeuAc synthetase could be specifically radiolabeled using benzoylbenzoyl-[alpha-32P]CTP as a photoaffinity label. This specific covalent binding occurred using enzyme preparations of different degrees of purity. These results suggest that benzoylbenzoic acid derivatives of pyrimidines should be of general use in the identification and active site mapping of pyrimidine-requiring proteins and enzymes. These include glycosyltransferases, sugar nucleotide synthetases, and transporters, and enzymes participating in the conjugation of bile acids and biosynthesis of nucleic acids and choline nucleotides.  相似文献   

18.
Isoleucyl-tRNA synthetase from Escherichia coli catalyzes the activation of [18O2]isoleucine by adenosine 5'-[(R)-alpha-17O]triphosphate with inversion of configuration at phosphorus. Moreover, isoleucyl-tRNA synthetase does not catalyze positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of isoleucine or in the presence of the competitive inhibitor isoleucinol, which effectively eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. Together, these observations require that isoleucyl-tRNA synthetase catalyzes the activation of isoleucine by associative "in line" nucleotidyl transfer. The synthesis of adenosine 5'-[(R)-alpha-17O]diphosphate and its conversion to adenosine 5'-[(R)-alpha-17O]triphosphate is described and an explanation provided for the reported differences between the treatment of adenosine 5'-[(S)-alpha-thiodiphosphate] with cyanogen bromide and bromine in [18O]water.  相似文献   

19.
Rat soluble catechol-O-methyltransferase cDNA was cloned into the pCAL-n-FLAG vector and expressed in Escherichia coli as a fusion protein with a calmodulin-binding peptide tag. The recombinant protein, comprising up to 30% of the total protein in the soluble fraction of E. coli, was purified by calmodulin affinity chromatography and gel filtration. Up to 16 mg of pure recombinant enzyme was recovered per liter of culture. Recombinant catechol-O-methyltransferase, in the bacterial soluble fraction, exhibited the same affinity for adrenaline as rat liver soluble catechol-O-methyltransferase (K(m) 428 [246, 609] microM and 531 [330, 732] microM, respectively), as well as the same affinity for the methyl donor, S-adenosyl-l-methionine (K(m) 27 [9, 45] microM and 38 [21, 55] microM, respectively). In addition, both the recombinant and the liver enzymes displayed the same sensitivity to the inhibitor 3,5-dinitrocatechol (IC(50) 132 [44, 397] nM and 74 [38, 143] nM, respectively), and both had the same catalytic number, respectively, 10.1 +/- 1.5 min(-1) and 8.3 +/- 0.3 min(-1). The purified recombinant enzyme also displayed the same affinity for the substrate as the purified rat liver catechol-O-methyltransferase (K(m) 336 [75, 597] microM and 439 [168, 711] microM, respectively) as well as the same inhibitor sensitivity (IC(50) 44 [19, 101] nM and 61 [33, 111] nM, respectively). This recombinant form of catechol-O-methyltransferase is kinetically identical to the rat liver enzyme. This system provides an easy and quick way of obtaining large amounts of soluble catechol-O-methyltransferase for both pharmacological and structural studies.  相似文献   

20.
The glutamyl-tRNA synthetase from Bacillus subtilis has been purified to homogeneity. It is a monomer of Mr = 65,500 whose NH2-terminal sequence is Met-Asn-Glu-Val-Arg-Val-Arg-Tyr-Ser-Pro-Ser-Pro-Thr-Gly-His-Leu. The number of tryptic peptides indicates the absence of a significant amount of sequence duplication. Under certain conditions, this monomeric enzyme is co-purified with a polypeptide beta of Mr = 46,000, which increases the affinity of the enzyme about 10-fold for glutamate and for ATP, and stabilizes it against heat inactivation. gamma-Globulins prepared against the monomeric enzyme can inhibit completely the glutamyl-tRNA synthetase activity of a B. subtilis extract and precipitate from this extract both the monomeric enzyme and the regulatory factor beta. These anti-alpha immunoglobulins do nt precipitate pure beta. These results show that the glutamyl-tRNA synthetase of B. subtilis has a structure similar to that of the Escherichia coli enzyme (Lapointe, J., and S?ll, D. (1972) J. Biol. Chem. 247, 4966-4974) and indicate that the beta factor has a function in the regulation of glutamyl-tRNA biosynthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号