首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inhibition of mPGES-1, the terminal enzyme in the arachidonic acid/COX pathway to regulate the production of pro-inflammatory prostaglandin PGE2, is considered an attractive new therapeutic target for safe and effective anti-inflammatory drugs. The discovery of a novel series of orally active, selective benzoxazole piperidinecarboxamides as mPGES-1 inhibitors is described. Structure–activity optimization of lead 5 with cyclohexyl carbinols resulted in compound 12, which showed excellent in vitro potency and selectivity against COX-2, and reasonable pharmacokinetic properties. Further SAR studies of the benzoxazole ring substituents lead to a novel series of highly potent compounds with improved PK profile, including 23, 26, and 29, which were effective in a carrageenan-stimulated guinea pig air pouch model of inflammation. Based on its excellent in vitro and in vivo pharmacological, pharmacokinetic and safety profile and ease of synthesis, compound 26 (PF-4693627) was advanced to clinical studies.  相似文献   

2.
Focal adhesion kinase (FAK) is activated in human platelets downstream of integrins, e.g. αIIbβ3, and other adhesion receptors e.g. GPVI. Mice in which platelets lack FAK have been shown to exhibit extended bleeding times and their platelets have been shown to display decreased spreading on fibrinogen-coated surfaces. Recently, a novel FAK inhibitor (PF-573,228) has become available, its selectivity for FAK shown in vitro and in cell lines. We determined the effect of this inhibitor on platelet function and signaling pathways. Like murine platelets lacking FAK, we found that PF-573,228 was effective at blocking human platelet spreading on fibrinogen-coated surfaces but did not affect the initial adhesion. We also found a reduced spreading on CRP-coated surfaces. Further analysis of the morphology of platelets adhered to these surfaces showed the defect in spreading occurred at the transition from filopodia to lamellipodia. Similar to that seen with murine neutrophils lacking FAK, we also observed an unexpected defect in intracellular calcium release in human platelets pre-treated with PF-573,228 which correlated with impaired dense granule secretion and aggregation. The aggregation defect could be partially rescued by addition of ADP, normally secreted from dense granules, suggesting that PF-573,228 has effects on FAK downstream of αIIbβ3 and elsewhere. Our data show that PF-573,228 is a useful tool for analysis of FAK function in cells and reveal that in human platelets FAK may regulate a rise in cell calcium and platelet spreading.  相似文献   

3.

Background

The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX).

Materials and Methods

The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models.

Results

The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status.

Conclusions

The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.  相似文献   

4.
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.  相似文献   

5.
Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; K i<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.  相似文献   

6.
AimsNonsteroidal anti-inflammatory drugs are a therapeutic modality for chronic cancer pain arising from bone metastases. Chronic administration of a cyclooxygenase (COX)-2 inhibitor is effective to bone cancer-related pain. However, adverse cardiovascular effects have limited COX-2 inhibitor therapy, and elucidation of better targets for blocking prostaglandin (PG) biosynthesis is necessary. Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that catalyzes isomerization of the endoperoxide PGH2 to PGE2. To investigate the validity of mPGES-1 as a therapeutic target, we evaluated bone cancer pain-related behaviors in mPGES-1 knockout (PGES-1?/?) mice.Main methodsLewis lung carcinoma cells (LLCCs) were injected into the intramedullary space of the femur of wild-type (WT) and PGES-1?/? mice. Pain-related behaviors were evaluated.Key findingsPGES-1?/? mice exhibited reduced tumor growth in bone marrow compared to WT. The expression of pro-calcitonin gene-related peptide (CGPR) in the dorsal root ganglia of L1–5 was significantly higher in WT mice at day 14, whereas it was unchanged in mPGES-1 mice. In the observation of pain-related behaviors, mPGES-1?/? mice exhibited significantly fewer spontaneous flinches and their onset was several days later than WT. The appearance of other pain-related behaviors in mPGES-1?/? mice was also delayed as compared to WT. LLCC-injected WT mice treated with a COX-2 inhibitor, celecoxib, exhibited similar temporal changes to mPGES1?/?.SignificanceThe present results suggest that mPGES-1 plays a crucial role in the enhancement of bone cancer growth and bone cancer pain, and that inhibition of mPGES-1 may have clinical utility in the management of bone cancer pain.  相似文献   

7.
A simple, rapid and sensitive liquid chromatography/tandem mass spectrometric (LC/MS/MS) analytical method was developed for quantification of Hsp90 inhibitor PF-04928473 in human plasma, following administration of its prodrug, PF-04929113. Sample processing involved protein precipitation by addition of 0.4 mL of methanol containing internal standard (PF-04972487) to 50 μL volume of plasma sample. Chromatographic separation of PF-04928473 and PF-04972487 was achieved on a Phenomenex® Luna C18(2) (2.0mm × 50 mm, 5 μm) column using a gradient elution method with mobile phase solvents: methanol containing 0.1% formic acid and 0.1% formic acid at a flow rate of 0.25 mL/min. Detection was performed in electrospray positive ionization mode, monitoring the ion transitions from m/z 465.1 → 350.1 (PF-04928473) and m/z 447.0 → 329.1 (PF-04972487). The retention times for PF-04928473 and PF-04972487 were 1.86 and 2.85 min, respectively. Calibration curves were generated in the range of 2–2000 ng/mL. The accuracy and precision ranged from 94.1 to 99.0% and 86.7 to 97.6%, respectively, which were calculated using quality control samples of three different concentrations analyzed in quintuplicate on four different days.  相似文献   

8.
Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.  相似文献   

9.
The Phosphatidyl inositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and c-Met signaling pathways are often deregulated in cancer. The two pathways are interconnected and at least c-Met has been implicated in drug resistance. The aim of the study was to assess in ovarian cancer preclinical models, the efficacy and tolerability of a dual PI3K mTOR inhibitor (PF-05212384 or gedatolisib) and a c-Met inhibitor (crizotinib) either as single agents or in combination. In vitro, both PF-05212384 and crizotinib showed a concentration dependent activity in the two ovarian cancer cell lines. The combination of the two did not result in synergistic activity. A subline resistant to gedatolisib was obtained and showed an increased expression of MDR-1 gene. In vivo results show that crizotinib alone did not display any activity in all the tumors investigated, while PF-05212384 alone had some marginal activity. The combination of the two resulted in all the experiments superior to single agents with a good tolerability. Considering that crizotinib did not show activity in the models used, the results indicate that crizotinib is able to potentiate the activity of PF-05212384. Although the activity of the combination was not striking in these three models of ovarian cancer, due to the good tolerability of the combination, the results would suggest the possibility to combine the two drugs in settings in which gedatolisib or crizotinib alone have already some significant activity.  相似文献   

10.
Inhibition of IKK-β (inhibitor of nuclear factor kappa-B kinase subunit beta) has been broadly documented as a promising approach for treatment of acute and chronic inflammatory diseases, cancer, and autoimmune diseases. Recently, we have identified a novel class of thiazolidine-2,4-diones as structurally novel modulators for IKK-β. Herein, we report a hit optimization study via analog synthesis strategy aiming to acquire more potent derivative(s), probe the structure activity relationship (SAR), and get reasonable explanations for the elicited IKK-β inhibitory activities though an in silico docking simulation study. Accordingly, a new series of eighteen thiazolidine-2,4-dione derivatives was rationally designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as noteworthy IKK-β potential modulators. Successfully, new IKK-β potent modulators were obtained, including the most potent analog up-to-date 7m with IC50 value of 260 nM. A detailed structure activity relationship (SAR) was discussed and a mechanistic study for 7m was carried out indicating its irreversible inhibition mode with IKK-β (Kinact value = 0.01 (min−1). Furthermore, the conducted in silico simulation study provided new insights for the binding modes of this novel class of modulators with IKK-β.  相似文献   

11.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH2 to PGE2 and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC50 of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.  相似文献   

12.
The discovery and selection of a highly potent and selective NaV1.7 inhibitor PF-06456384, designed specifically for intravenous infusion, is disclosed. Extensive in vitro pharmacology and ADME profiling followed by in vivo preclinical PK and efficacy model data are discussed. A proposed protein–ligand binding mode for this compound is also provided to rationalise the high levels of potency and selectivity over inhibition of related sodium channels. To further support the proposed binding mode, potent conjugates are described which illustrate the potential for development of chemical probes to enable further target evaluation.  相似文献   

13.
Endothelin-converting enzyme-2 (ECE-2) is a membrane-bound zinc-dependent metalloprotease that shares a high degree of sequence homology with ECE-1, but displays an acidic pH optimum characteristic of maturing enzymes acting late in the secretory pathway. Although ECE-2, like ECE-1, can cleave the big endothelin intermediate to produce the vasoconstrictive endothelin peptide, its true physiological function remains to be elucidated, a task that is hampered by the lack of specific tools to study and discriminate ECE-2 from ECE-1, i.e. specific substrates and/or specific inhibitors. To fill this gap, we searched for novel ECE-specific peptide substrates. To this end, peptides derived from the big endothelin intermediate were tested using ECE-1 and ECE-2, leading to the identification of an ECE-1-specific substrate. Moreover, screening of our proprietary fluorigenic peptide Fluofast® libraries using ECE-1 and ECE-2 allowed the identification of Ac-SKG-Pya-F-W-Nop-GGK-NH2 (PL405), as a specific and high affinity ECE-2 substrate. Indeed, ECE-2 cleaved PL405 at the Pya-F amide bond with a specificity constant (kcat/Km) of 8.1 ± 0.9 × 103 m−1 s−1. Using this novel substrate, we also characterized the first potent (Ki = 7.7 ± 0.3 nm) and relatively selective ECE-2 inhibitor and developed a quantitative fluorigenic ECE-2 assay. The assay was used to study the ex vivo ECE-2 activity in wild type and ECE-2 knock-out tissues and was found to truly reflect ECE-2 expression patterns. The PL405 assay is thus the first tool to study ECE-2 inhibition using high throughput screening or for ex vivo ECE-2 quantification.  相似文献   

14.
A kinetic study of oxidative phosphorylation by pea submitochondrial particles gave two Km values for ADP, one low, the other high. The high value probably reflected a damaged site or a population of leaky mitochondria. Only the high affinity site with a low Km for ADP was involved in ATP synthesis. α,β-Methylene ADP was found to be a competitive inhibitor of ATP synthesis. The inorganic phosphate analog, thiophosphate, decreased the apparent Km of ADP while the rate of the reaction remained approximately the same. Adenyl imidodiphosphate, a specific inhibitor of ATP hydrolysis activity, had little effect on oxidative phosphorylation. A slight decrease in the Km of the high affinity binding site for ADP was noted. Aurovertin was found to be a potent inhibitor of oxidative phosphorylation in pea submitochondrial particles. The Km of the high affinity site was increased 10-fold. Also, the inhibition normally exerted by ADP on ATPase activity was severely reduced by aurovertin. In contrast, increasing the concentration of aurovertin only slightly affected the level of inhibition caused by adenyl imidodiphosphate on ATP hydrolysis.  相似文献   

15.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

16.
The design and development of a series of highly selective pyrrolidine carboxamide 11β-HSD1 inhibitors are described. These compounds including PF-877423 demonstrated potent in vitro activity against both human and mouse 11β-HSD1 enzymes. In an in vivo assay, PF-877423 inhibited the conversion of cortisone to cortisol. Structure guided optimization effort yielded potent and stable 11β-HSD1 selective inhibitor 42.  相似文献   

17.
Mitochondria with high membrane potential (ΔΨm) are enriched in the presynaptic nerve terminal at vertebrate neuromuscular junctions, but the exact function of these localized synaptic mitochondria remains unclear. Here, we investigated the correlation between mitochondrial ΔΨm and the development of synaptic specializations. Using mitochondrial ΔΨm-sensitive probe JC-1, we found that ΔΨm in Xenopus spinal neurons could be reversibly elevated by creatine and suppressed by FCCP. Along naïve neurites, preexisting synaptic vesicle (SV) clusters were positively correlated with mitochondrial ΔΨm, suggesting a potential regulatory role of mitochondrial activity in synaptogenesis. Indicating a specific role of mitochondrial activity in presynaptic development, mitochondrial ATP synthase inhibitor oligomycin, but not mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157, inhibited the clustering of SVs induced by growth factor–coated beads. Local F-actin assembly induced along spinal neurites by beads was suppressed by FCCP or oligomycin. Our results suggest that a key role of presynaptic mitochondria is to provide ATP for the assembly of actin cytoskeleton involved in the assembly of the presynaptic specialization including the clustering of SVs and mitochondria themselves.  相似文献   

18.
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.  相似文献   

19.
Processing of the Gag precursor protein by the viral protease during particle release triggers virion maturation, an essential step in the virus replication cycle. The first-in-class HIV-1 maturation inhibitor dimethylsuccinyl betulinic acid [PA-457 or bevirimat (BVM)] blocks HIV-1 maturation by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. A structurally distinct molecule, PF-46396, was recently reported to have a similar mode of action to that of BVM. Because of the structural dissimilarity between BVM and PF-46396, we hypothesized that the two compounds might interact differentially with the putative maturation inhibitor-binding pocket in Gag. To test this hypothesis, PF-46396 resistance was selected for in vitro. Resistance mutations were identified in three regions of Gag: around the CA-SP1 cleavage site where BVM resistance maps, at CA amino acid 201, and in the CA major homology region (MHR). The MHR mutants are profoundly PF-46396-dependent in Gag assembly and release and virus replication. The severe defect exhibited by the inhibitor-dependent MHR mutants in the absence of the compound is also corrected by a second-site compensatory change far downstream in SP1, suggesting structural and functional cross-talk between the HIV-1 CA MHR and SP1. When PF-46396 and BVM were both present in infected cells they exhibited mutually antagonistic behavior. Together, these results identify Gag residues that line the maturation inhibitor-binding pocket and suggest that BVM and PF-46396 interact differentially with this putative pocket. These findings provide novel insights into the structure-function relationship between the CA MHR and SP1, two domains of Gag that are critical to both assembly and maturation. The highly conserved nature of the MHR across all orthoretroviridae suggests that these findings will be broadly relevant to retroviral assembly. Finally, the results presented here provide a framework for increased structural understanding of HIV-1 maturation inhibitor activity.  相似文献   

20.
C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD+ (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号